
Introduction to Computer Architectures 1

ICAR Laboratory : PicoBlaze Lab 5
The aim of this lab is to demonstrate the different processing architectures defined by
Flynn’s taxonomy. These classifications describes a processor in terms of how it
handles its instructions and data elements. The simplest of these architectures is SISD
i.e. a processor that decodes and executes one instruction at a time e.g. the PicoBlaze
from the previous labs. Through the addition of extra hardware units this core
processing architecture can be expanded, allowing more instructions and data
elements to be processed in parallel, therefore, hopefully increasing processing
performance.

Figure 1: Processing architecture classifications

Processor Architectures and Performance
To assess the processing performance of different processor architectures we shall use
the algorithm shown in figure 2. This flowchart performs a vector addition, adding
together 16 pairs of data values stored in external memory.

Note: in this first example data pairs are store in sequential memory locations.

An assembly language program to implement this functionality has already been
created and can be downloaded from the module's VLE page: vec_SISD.psm (link
under lab script). Using your preferred web browser, download the file and open it in
FIDEx. In this program the address of the memory location from which data is read
i.e. SrcPtr, is stored in register S0 and the address of the memory location to which
data is written i.e. DesPtr, is stored in register S1.

Task 1
In the FIDEx create a memory block module for the RAM, as shown in figure 4. Then
initialise the memory locations 0 – 31 (0x00 – 0x1F) with the data values 1 – 32 as
shown in figure 3. Single step through this program. Confirm the results stored in
memory locations 32 – 47 (0x20 – 0x2F) are correct.

Hint: by default memory location contents are displayed in hexadecimal. When
entering the data values shown in figure 3 you may wish to switch to decimal mode
by left clicking on the icon. To save time you can just enter the values 1 – 10.

Mike Freeman 27/02/2024

Introduction to Computer Architectures 2

2

Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Address 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Data 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Address 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Data 3 7 11 15 19 23 27 31 35 39 41 47 51 55 59 63

Figure 3: RAM input data values (top), output data values (bottom)

Figure 4: FIDEx RAM configuration

Mike Freeman 27/02/2024

Figure 2 : Vector addition flowchart

Introduction to Computer Architectures 3

Note, you can see in figure 3 one input vector is stored at even address locations (red
addresses), the other at odd address locations (green addresses). The output vector i.e.
the sum of the two input vectors is stored at address 32 onwards (blue addresses).

A rough estimate of the processing requirements of any program can be obtained by
counting the number of instructions executed. Each instruction in the PicoBlaze
instruction set takes two cycles to execute, therefore the time to process this data is
given by:

Processing time = Instructions Executed × 2 × Clock period

If the typical clock speed for the PicoBlaze processor is 50MHz, estimate how long it
will take to execute this program.

Hint: the number of instructions in the program may differ from the number of
instructions executed i.e. looping software programming structures. Within FIDEx the
number of clock cycles executed is shown in the bottom bar.

Task 2
A Vivado project called PicoBlaze_VHDL_SISD, has already been created for
this program and can be downloaded from the module's VLE page. A block diagram
of this processing architecture is shown in figure 5. Using your preferred web
browser, download the file PicoBlaze_VHDL_SISD.zip to c:\temp (or your
home directory). Right click on this file selecting ‘Extract all…’ to unzip it, start
Vivado and open this project as previously described.

Figure 5: System architecture block diagram

To determine how fast this processor can be clocked on a Xilinx FPGA (the actual
silicon) you will need to synthesise the VHDL files i.e. convert these files into low
level logic gates.

Click on the icon. Click OK to re-run this process.

The software tools will now synthesize (convert) the VHDL models into hardware i.e.
logic gates & registers, whilst it is doing this a progress bar is displayed in the top

Mike Freeman 27/02/2024

Introduction to Computer Architectures 4

right of the screen (message displayed will change
as it goes through the various stages)

When complete the Implementation Completed box will appear. Select the View
Reports option, then click on OK to continue. The report window is at the bottom of
the screen. Double click on the Utilisation Report, as shown in figure 6, then scroll
down this report until you see the Slice Logic table, as shown in figure 7.

Figure 6: Utilization report

Figure 7: Slice LUTs used

The basic building block within the FPGA is a Slice. These contain logic: look up
tables (LUT) and flip-flops. This implementation of the PicoBlaze needs 141 LUT
and 98 flip-flops (numbers may vary slightly with Vivado version). Make a record of
these figures so that the hardware requirements of each system can be compared.

Next, under the icon click on Open Synthesized Design pull-down
menu. Then click on Report Timing Summary, click OK when the timing window
opens. This will open new tab: Timing, in the bottom Tcl Console window.
This timing report shows how quickly this hardware can be clocked. Remember the
maximum clock speed of the processor is determined by the critical path delay i.e. the
“biggest” block of logic gates, with the longest input to output logic path.

This timing report compares the performance of this system to a 50MHz clock speed
i.e. how much timing 'slack' (spare time) is there compared to a 20ns period.

Therefore, taking the Setup slack timing value:

Mike Freeman 27/02/2024

Introduction to Computer Architectures 5

Max frequency = 1 ÷ (20ns – 10.296ns) = 103 MHz
Again, note down this value as it will be used to assess the performance of each
system.

Figure 8: Timing report

Task 3
Within the Sources window double click on the file picoblaze_top_level_tb.
This will open the top level test bench file, as shown in figure 9 i.e. the main VHDL
simulation model, update the line shown below with the processor’s calculated
minimum clock period, replacing 0ns with 10.296ns. Then save this file by clicking
on the save icon , or by pressing CTRL S.

Figure 9: Test bench

Figure 10: Simulation waveform

Mike Freeman 27/02/2024

Introduction to Computer Architectures 6

To simulate this Picoblaze system click on the icon, within the
Simulation panel (middle, left side). Then select 'Run behavioural simulation' from
the options given. This will open a waveform trace as shown in figure 10.

To step through the simulation click on the icon, this will simulate the hardware
in 1us time chunks (defined in the text box). Simulate this program for 5 us, during
this time the processor's hardware is simulated executing the vector addition program
vec_SISD.psm, when it is finished the code will enter an infinite loop, as shown
below:

Within the simulation this point can be identified by looking at the processor's address
bus, as it will not change i.e. it will always jump to address 0x0E. How long did it
take to execute this program? We can now use this is the architecture's hardware size
(slices) and executions time as a baseline, allowing us to compare the relative
performance of the other three processor classifications (MISD, SIMD and MIMD).

Figure 11: Pipeline registers, separating address decode and peripheral devices

Task 4
Pipelining techniques can be used to increase a processor’s maximum clock speed and
therefore the number of instructions that are executed per second. This is achieved by
dividing up large logic blocks through the insertion of registers, reducing the worst
case propagation delays i.e. the critical path delay. A Vivado project called
PicoBlaze_VHDL_MISD, has already been created for this architecture and can be
downloaded from the module web page.

The block diagram of this new architecture is the same as figure 5, as the
modifications are internal to the processor, as illustrated in figure 11. Using your
preferred web browser, download the file PicoBlaze_VHDL_MISD.zip to c:\

Mike Freeman 27/02/2024

Introduction to Computer Architectures 7

temp (or your home directory). Right click on this file selecting ‘Extract all…’ to
unzip it, start Vivado and open this project.

Note, no modification to the software is required, a significant advantage for legacy
code. In general pipelining should always improve the performance of a processor,
but as we will see in later laboratories, this is not always true (control hazards).

To determine how fast this new processor can be clocked on a Xilinx FPGA you will
need to synthesize the VHDL files as described in task 2. Scroll through the
Utilisation Report file noting the number of slices and flip-flops required i.e. the size
of the hardware. Next, generate the Timing Report file to determine the Minimum
period (Maximum frequency).

Note, you should see a clock speed improvement, but at what cost?

As before double left click on the file picoblaze_top_level_tb and update
the clock period, replacing 0ns with the Setup slack timing value. Simulate this design
in 1us time chunks until the ‘trap’ instruction is executed i.e. address 0x0E. How long
did it take to execute this program? Why is it faster?

Figure 12: System architecture block diagram

Task 5
Hardware replication techniques can be used to increase the number of operations
performed in parallel and therefore reduce the number of instructions required to
implement a program. This is achieved through the addition of complex, multi-
operand instructions to a processor’s instruction set. Unfortunately, the PicoBlaze
processor does not directly support these types of instructions. However, they can be
approximated using a co-processor i.e. complex data processing hardware, added into
the processor's memory space. For the purpose of this lab this new ‘CPU’ can be
considered to be the combination of a SISD PicoBlaze processor and a co-processor,
as shown in figures 12.

Mike Freeman 27/02/2024

New
“Processor”

Introduction to Computer Architectures 8

A Vivado project called PicoBlaze_VHDL_SIMD, has already been created for
this architecture and can be downloaded from the module webpage. Using your
preferred web browser, download the file PicoBlaze_VHDL_SIMD.zip to c:\
temp (or your home directory). Right click on this file selecting ‘Extract all…’ to
unzip it, start Vivado and open this project as previously described.

SIMD architectures process data in packets i.e. an array, containg multiple values. To
support these SIMD instructions each memory location will now store 32 bits i.e. a
packet of four 8bit data values, as show in figure 14. In this example the address is
given in word (32bit) addressable format, each address holding two values of the
input vectors. The previous example in figure 3 uses a byte (8bit) addressable format.

The co-processor hardware implements a vector addition, VADD ‘instruction’, which
performs the following steps:

(1) Read a data packet from memory (32bits containing four 8bit data values)
(2) Add each data pair (two 8bit additions)
(3) Write two 8bit results to data memory (a 16bit half word)

Note, memory (RAM) has been removed from the PicoBlazes local bus as it now uses
a 32bit data bus (shown in figure 12), all memory transactions now pass through the
co-processor. The addition of the four data values is performed in the co-processor
using the hardware shown in figure 13 e.g. 1+2=3 and 3+4=7 are performed in
parallel.

Figure 13: SIMD VADD hardware

Address 0 1 2 3
Data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Address 4 5 6 7
Data 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Address 32 33 34 35
Data 3 7 11 15 19 23 27 31 35 39 41 47 51 55 59 63

Figure 14: RAM input data values (top), output data values (bottom)

Mike Freeman 27/02/2024

Introduction to Computer Architectures 9

The VADD ‘instruction’ can not be used directly within a PicoBlaze assembly
language program, rather the opcode and operands must be passed to the co-processor
using WRPRT instructions i.e. a remote procedure call (RPC), passing parameters to
registers within the co-processor which then performs the specified procedure, as
shown in figure 15.

Figure 15: new ‘instruction’ format

The co-processor has four memory mapped registers:
• Read : address 0x00, pass to the co-processor the 8bit start address of input

vectors. In the example code this is ram_src_addr, address 0x00. This is
address zero in the co-processor's memory i.e. the green memory block in
figure 12.

• Write : address 0x01, pass to the co-processor the 8bit result address of output
vector. In the example code this is ram_des_addr, address 0x20. Again,
this address is in the co-processor's memory, address 32 as shown in figure 14.

• Command : address 0x03, pass to the co-processor a one-hot command code.
In the example code this is ADD_CMD, address 0x80, which triggers the co-
processor to start the addition of the two vectors.

• Status : address 0x03, allows the PicoBlaze to read the status of the co-
processor e.g. idle, error etc.

• Data : address 0x02, allows the PicoBlaze to read or write to the co-
processor's memory i.e. acts as a bridge between the two address spaces.

The vector addition operation is triggered by the PicoBlaze when it writes the
command code to address 0x03 (command register), therefore, the read and write
registers must be updated first. The processor must then wait for the co-processor to
complete this 'instruction' before proceeding, this is achieved by repeatedly testing the
status register to see if the co-processor is idle.

Note, originally I was going to modify the PicoBlaze's instruction decoder and
increase its data bus width to 32bits so that I could add SIMD instructions, but this
proved to be too much fun :).

Mike Freeman 27/02/2024

Instruction: VADD <Read base ADDR>, <Write base ADDR>
Format: Opcode Operand Operand

Command Register
Addr - 0x03
Format - One hot

Bit 7 : add
Bit 6 : read
Bit 5 : write

Bit 4 : NU

Bit 3 : NU
Bit 2 : NU
Bit 1 : NU
Bit 0 : NU

Read Base Register
Addr - 0x00
Format – 8bit

Write Base Register
Addr - 0x01
Format – 8bit

Status Register
Addr - 0x03
Bits 7 to 2 : NU
Bit 1 : error
Bit 0 : idle

Introduction to Computer Architectures 10

An assembly language program to implement this functionality has already been
created and can be downloaded from the module webpage: vec_SIMD.psm,
examine this code and identify its key features.

Note, the VADD ‘instruction’ generates a 16bit result, but its memory is 32bits wide,
therefore, the co-processor writes data to the high half word for even addresses and
the low half word for odd addresses.

To determine how fast this new processor can be clocked on a Xilinx FPGA you will
need to synthesize the VHDL files as described in task 2. Scroll through the
Utilisation Report file noting the number of slices and flip-flops required i.e. the size
of the hardware. Next, scroll to the Timing Report file to determine the Minimum
period (Maximum frequency).

Why do these figures differ from the MISD system? Should its performance be faster
or slower than this system?

Note, you should see a clock speed reduction for the SIMD system.

Task 6
How many simple picoBlaze instructions does the VADD ‘instruction’ replace e.g.
memory accesses, arithmetic operations etc? Compared to the SISD architecture
estimate how much faster this new implementation should be.

As before double left click on the file picoblaze_top_level_tb and update
the clock period, replacing 0ns with the Setup slack timing value. Simulate this design
in 1us time chunks until the ‘trap’ instruction is executed i.e. Jump trap. How long did
it take to execute this program? Why is it faster when the clock speed is slower?

Figure 16: Parallel PicoBlaze architecture

Mike Freeman 27/02/2024

Introduction to Computer Architectures 11

Examine the waveform window, what is the main bottle neck in this program’s
execution i.e. what does this program spend most of its time doing? If this hardware
was integrated in to the PicoBlaze can you estimate how much faster this program
would run i.e. if you did not need to write and read to the memory mapped registers?

Task 7
An alternative method to improve processing performance is to use multiple
processors, each working on a subset of the data, as shown in figure 16. In this
example each processor calculates the sum of 8 pairs of data values stored in a shared
RAM i.e. half the data. As this memory can only read or write one value at a time
additional arbitration logic is included in the IRQ handler IP-cores i.e. implementing
mutual exclusion synchronisation, only allowing one processor to access memory at a
time.

An assembly language program to implement the required functionality has already
been created and can be downloaded from the module webpage. Using your preferred
web browser, download the file vec_MIMD.psm.

Each processor uses the same program, therefore, additional coding is required to
allow each processor to determine what subset of the data it should process. This is
performed in software using the arbiter’s unique ID code (hardwired into each IRQ
handler) i.e. this hard-coded value is read by each processor, allowing it to select the
correct source / destination address pointers.

Note, this approach of using a common program that determines what operations it
should perform based on its node ID is used in parallel programming “languages” e.g.
Message Passing Interface (MPI) library.

Access to the shared memory is controlled through the arbiter’s status register. Before
the processor tries to access memory it reads the arb_status register. If the value
returned is zero this processor can not access the shared memory and must wait i.e.
memory is currently being used by the other processor. If the value is a non zero value
this processor may access memory. Hardware within the arbiter’s control logic then
automatically sets the arb_status register to zero i.e. locking out the other
processor.

When a processor gains control of the shared memory it enters its critical section i.e.
parts of the program that read or write to the shared memory. When complete the
program can relinquish control of the shared memory by performing a dummy write
to the arb_status register, resetting the arb_status register to a non zero
value. This change in status then allows the other processor to access this memory.

Examine the code in vec_MIMD.psm and identify these key features. Estimate how
long it will take for this system to perform the vector addition. Compared to the SISD
architecture estimate how much faster this new implementation should be.

Note, knowing that the program performs the addition of 8 values and that each
instruction requires 2 clock cycles, you can estimate the program's execution time by
counting the number of instructions executed in the main loop.

Mike Freeman 27/02/2024

Introduction to Computer Architectures 12

Task 8
A Vivado project called PicoBlaze_VHDL_MIMD, has already been created for
this architecture and can be downloaded from the module webpage. Using your
preferred web browser, download the file PicoBlaze_VHDL_MIMD.zip to c:\
temp (or your home directory). Right click on this file selecting ‘Extract all…’ to
unzip it, start Vivado and open this project as previously described.

To determine how fast this new processor can be clocked on a Xilinx FPGA you will
need to synthesize the VHDL files as described in task 2. Scroll through the
Utilisation Report file noting the number of slices and flip-flops required i.e. the size
of the hardware. Next, scroll to the Timing Report file to determine the Minimum
period (Maximum frequency).

As before double left click on the file picoblaze_top_level_tb and update
the clock period, replacing 0ns with the Setup slack timing value. Simulate this design
in 1us time chunks until the ‘trap’ instruction is executed i.e. Jump trap.

How long did it take to execute this program? Why is it slower than the SISD
architecture? What is the reason for the difference in performance? Examine the
waveform window, what is the main bottleneck in this program’s execution?

Note, how and when are the processors accessing the shared memory?

Task 9
Using the synthesis results obtained answer the following:

 Calculate the relative speedup of each architecture compared to a SISD
 architecture.

 Compare the relative hardware requirements of each architecture, which gave
the best hardware vs performance return for the selected application.

 Consider what types of applications would be best suited for the pipelined
(MISD) and parallel (SIMD & MIMD) architectures. What are the possible
advantages and disadvantages of these architectures? What complex
instruction would more efficiently support this program?

Mike Freeman 27/02/2024

Speedup = Time to execute program on SISD architecture
Time to execute program on new architecture

Introduction to Computer Architectures 13

Appendix A : Interrupt Controller
The PicoBlaze processor has only one interrupt pin, however, in a real system
multiple external sources may wish to interrupt the processor, i.e. trigger the
execution of specific ISR's to handle external events. To support this a hardware
interrupt controller is used. The processor can configure this hardware component by
writing data to the irq_controller_cmd register. This register can enable 0 – 7
external interrupt sources (pins), logging which interrupt line has been pulsed and
assigning it a priority, before interrupting the processor.

 command register : irq_controller_cmd

 Bit 7 : irq_7 enable (1=enable, 0=disable)
 Bit 6 : irq_6 enable (1=enable, 0=disable)
 Bit 5 : irq_5 enable (1=enable, 0=disable)
 Bit 4 : irq_4 enable (1=enable, 0=disable)
 Bit 3 : irq_3 enable (1=enable, 0=disable)
 Bit 2 : irq_2 enable (1=enable, 0=disable)
 Bit 1 : irq_1 enable (1=enable, 0=disable)
 Bit 0 : irq_0 enable (1=enable, 0=disable)

Figure A1 : irq_controller_cmd register bit fields

The processor can identify the source of the interrupt by reading the
irq_controller_trig register, as shown in figure A2. This returns a one-hot
value indicating the highest priority interrupt source. Interrupt 0 is the highest priority,
interrupt 7 is the lowest priority e.g. if interrupts 2 and 4 occur at the same time the
irq_controller_trig register will return the value 0x04, indicating that
interrupt 2 (bit position 2) was triggered. When the ISR for this interrupt is complete a
second interrupt will be generated by the interrupt controller for interrupt 4, returning
the value 0x10. Reading this register will clear the active interrupt flag. Whilst
processing an interrupt the PicoBlaze automatically disables interrupts, these can be
re-enabled using the interrupt return instruction i.e. you can not interrupt and interrupt
service routine.

 Trigger register (one hot) : irq_controller_trig
 --
 Bit 7 : irq_7 (1=enable, 0=disable)
 Bit 6 : irq_6 (1=enable, 0=disable)
 Bit 5 : irq_5 (1=enable, 0=disable)
 Bit 4 : irq_4 (1=enable, 0=disable)
 Bit 3 : irq_3 (1=enable, 0=disable)
 Bit 2 : irq_2 (1=enable, 0=disable)
 Bit 1 : irq_1 (1=enable, 0=disable)
 Bit 0 : irq_0 (1=enable, 0=disable)

Figure A2 : irq_controller_trig register bit fields

Mike Freeman 27/02/2024

	ICAR Laboratory : PicoBlaze Lab 5
	Processor Architectures and Performance
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6
	Task 7
	Task 8
	Task 9
	Appendix A : Interrupt Controller

