
Computer Architectures 1

Software Lab 1 : Analytical Engine
The aim of this lab is to introduce the concept of an instruction and how these can be
combined to produce a simple program. To illustrate these ideas a software simulation
of Babbage’s Analytical Engine will be used. This simulator is written in the Java
programming language and runs within a web browser as a Java applet allowing both
a Windows or Linux platforms to be used. Note, there may be some Java 'issues'
under Linux.

The original website which contains this application and additional information on
this computing machine can be found at:

http://www.fourmilab.ch/babbage/applet.html

However, for the purposes of this lab we shall be running the simulator locally. To
start the simulator left click on the Windows icon in the bottom left of the screen and
type :

 -> The Analytical Engine

Note, A zip file containing all the required files can also be downloaded from the
module web page (link under lab script). This has the advantage that you can continue
these exercises at home on your own computer without having to be connected to a
network.

This will launch the two simulator windows as shown in figure 1. This may take a few
seconds to appear (approx 30s). The main window contains the user interface
allowing you to select the “programming cards” you wish to execute, displays output
results and error messages. It also allows you to initialise the computer [reset]
execute one instruction at a time [step], or to select continuous execution
[start], terminating when all programming cards have been executed.

The second window opened by this simulator is the Annunciator panel as shown in
figure 2. This windows displays the current state of the three main functional blocks
within the Analytical engine i.e. Card-reader, Mill and Store, as shown in
figure 3.

Task 1
By default the simulator will load the programming example shown in table 1 from
the text file ex1.ae.

To initialise the simulator left click on the button within the main user
interface window. The programming ‘cards’ used to implement this program are
displayed in the user interface within the Analyst’s Program panel. You can move up
and down this chain to view these cards using the side scroll bar. The programming
card to be executed next is highlighted in yellow on the Annunciator panel, within the
blue card reader section. All calculations are performed in the Mill, with operand
data stored in Ingress registers 0 and 1. Results from these calculations are stored
in the Egress register 0.

 Mike@simplecpudesign.com : 15/07/19 Page : 1

http://www.fourmilab.ch/babbage/applet.html
mailto:Mike@simplecpudesign.com

Computer Architectures 2

Note, the Mill needs storage (memory, registers) to perform its calculations.
Babbage called these locations Ingress for input data (operands, numbers to be
processed) and Egress for output data (results, data produced by instructions).

The default storage size of the Ingress and Egress registers is 50 decimal digits.
For larger operands and result data the prime registers Ingress 0’ and Egress 0’
are used to represent 100 decimal digit values i.e. the result from a multiplication, or
division (quotient and remainder).

Figure 1 : Main user interface

Figure 2 : Annunciator panel

 Mike@simplecpudesign.com : 15/07/19 Page : 2

mailto:Mike@simplecpudesign.com

Computer Architectures 3

Figure 3 : computer architecture block diagram

Table 1 : programming example

Group Symbol Operation
Load NX V Initialise location X with value V

 X : 000 to 999
 V : signed 32 digit decimal number

LX Transfer Store location X to Ingress (store value unchanged)
 X : 000 to 999

ZX Transfer Store location X to Ingress (store value zeroed)
 X : 000 to 999

Store SX Transfer Egress to Store location X
 X : 000 to 999

Arithmetic + Add, Ingress 0 + Ingress 1, result stored in Egress 0
 If a carry is generated the run-up flag is set

– Subtract, Ingress 0 – Ingress 1, result stored in Egress 0
 If a borrow is generated the run-up flag is set

× (*) Multiply, Ingress 0 × Ingress 1, result stored in Egress 0 and 0’
 Lower digits stores in Egress 0, upper digits in Egress 0’

÷ (/) Divide, Ingress 0, 0’ ÷ Ingress 1, result stored in Egress 0 and 0’
 Quotient stored in Egress 0' remainder in Egress 0

Action B Ring bell

Table 2 : instruction set

 Mike@simplecpudesign.com : 15/07/19 Page : 3

mailto:Mike@simplecpudesign.com

Computer Architectures 4

When the current Mill arithmetic operation has been set (+,-,*,/) the Ingress
registers can be loaded. This is achieve using the LX instruction, transferring data
from the Store to the Mill. The first LX command transfers its data to Ingress
register 0, the second to Ingress register 1. When both registers are loaded the
arithmetic function is triggered, updating the specified Egress registers and
reinitialising the Mill ready for the next LX data pair.

Note, a variable is a symbolic name (identifier) representing an unknown quantity of
information (value) e.g. A=B. Within a computer variables have to be stored
somewhere otherwise this information is lost, typically memory or registers.

Question, if the code fragment below performs the calculation A=B+C, where are A,B
and C are stored in memory? What registers are used to store these values during the
calculation?

+
L 300
L 101
S 002

Question, the Mill’s arithmetic operation will remain the same until a new
arithmetic programming card is issued. What is the advantages of this approach?

At this stage you should have a basic understanding of the computer's architecture
(figure 3) i.e. what's connected to what, its instruction set (table 2) and the instructions
(functions) it can perform.

The instructions currently loaded into the simulator (file ex1.ae.) implement the
program described in table 1 and are used to solve the following simultaneous
equations.

3x + 4y = 11
5x + 6y = 17

The algorithm used to solve these equations for x takes the form of

Ax + By = C
Dx + Ey = F

The operations required to solve this equation are broken down into a number of steps
each implemented by an instruction shown in table 1. A full listing of this program is
shown in Appendix A, figures A1 and A2.

Question, examine this code (figure A1) can you see how these instructions
implement the above algorithm? Think how you would do this using pen & paper.

Task 2
Using the button, single step through the current program file ex1.ae. After
each step examine the state of the Ingress, Egress and Store. Check that the
intermediate results generated are as defined by the program shown in table 1.

 Mike@simplecpudesign.com : 15/07/19 Page : 4

DB - AE

BF - EC
 x

mailto:Mike@simplecpudesign.com

Computer Architectures 5

Tip, within the main user interface tick the Trace box, this will create a list of all
instructions executed and their results within the Attendant’s Log panel.

Question, how is the result of the final division stored in the Mill i.e. what registers
are used? Hint, refer to table 2, +- are different to */, what are Egress 0 & 0’used
for? A full description of each programming card can be found on the VLE.

Task 3
Edit the existing program ex1.ae (described below) to calculate the following
equation

A = B + C – D × E

where variables A, B, C, D and E are stored in memory. You can choose any unused
memory location i.e. 0 to 1000, using the following initial conditions:

A = 0 B = 1 C = 2 D = 3 E = 4

Note, variable A will be overwritten with the final result, so strictly speaking you do
not need to set it to zero. However, its considered good practice to initialise all
variables.

Editing a program : within the main user interface edit the text within the Analyst’s
Program panel directly. To update the machine with these modification left click on
the button. These changes can be saved to a text file by left clicking in this
panel, pressing CNTRL-A to select all the text, CNTRL-C to copy. Then open
Notepad by selecting:

Start -> All Programs -> Accessories -> Notepad

Then within Notepad press CNTRL-V to paste this text into the editor. You can now
save these updates by clicking on the pull down menu:

File -> Save As

Note, you will need to update the ‘File name:’ text box to *.* to avoid adding an
.txt file extension. To load a pre-saved program revise the previously described
options i.e. select and copy the text from Notepad, then paste into the Analyst’s
Program panel.

Again single step through the program. After each step examine the state of the
Ingress, Egress and Store. Check that the intermediate results generated are as
defined by your program. Is the final value correct?

Task 4
In addition to using the multiplication programming card ‘×’ an alternative
implementation could be performed using repeated addition. Using this technique
write a program to perform the following calculation, you may not use the ‘×’ card:

A = B × 3

 Mike@simplecpudesign.com : 15/07/19 Page : 5

mailto:Mike@simplecpudesign.com

Computer Architectures 6

where variables A and B are stored in memory. You can choose any unused memory
location i.e. 0 to 1000, using the following initial conditions:

A = 0 B = 10

Again single step through the program and confirm that the correct result is produced.

Question, why couldn’t this program be used to perform the following calculation:

A = B × C

where A, B and C are variables stored in memory?

A full list of the programming cards used in the Analytical engine can be found on the
module web page. Using the 'Stepping Up / Down' card modify your program to
perform the following calculation, again you may not use the ‘×’ card:

A = B × 1000

Hint, this is a base-10 machine, you will need to use the '+' card to save the result
back to memory.

Task 5
Using the 'Combinatorial' card described in the online documentation rewrite your
multiplication program to allow it to perform multiplication through repeated addition
were both operands are stored in memory i.e. using only the + and – arithmetic
functions implement the following equation:

A = B × C

where variables A, B and C are stored in memory.

N1 0
+
L1
L0
CF?1
CF+4
-
L1
L0
S0
B

Figure 4: 'Combinatorial' card example

Hint, the 'combinatorial card' allows you to 'jump' to different instructions within
your program i.e. both forwards (F) and backwards (B). This jump is either
unconditional i.e. will always be taken, or conditional on the result of the last
arithmetic operation, which will set or clear the run-up lever. The run-up lever state is
shown in the Annunciator panel (top left), figure 2. Conditional jumps are taken if the
run-up lever is set, otherwise they are ignored and the next sequential card executed.

Consider the operation of the example shown in figure 4. This sequence of cards

 Mike@simplecpudesign.com : 15/07/19 Page : 6

“Jump” Examples

CF?1 : jump forward 1 instruction if the run-
up lever is set

CF+4: jump forwards 4 instructions

Note, the F character may be replaced with B
to jump backwards to previous instruction.

mailto:Mike@simplecpudesign.com

Computer Architectures 7

replaces the number in column 0 of the Store (memory location 0) with its absolute
value:

MEM[0] = ABS(MEM[0])

where column 0 stores the users input value e.g. N0 +100, or N0 -100 (not shown in
figure 4). In this example the run-up lever controls the flow of instructions, from the
online documentation its operations is described as follows:

“Addition sets the run-up lever if the sum of two quantities differs in sign from the
first argument; since we are adding the unknown to zero, the run-up lever will be set
only when the number in column 0 is negative.”

One possible implementation of A=B×C could be:

A = 0
LOOP

C = C – 1
IF C < 0 EXIT LOOP
A = A + B

END LOOP
STOP

Using this algorithm implement a program to perform multiplication through repeated
addition.

Summary
Modern computers are normally base 2 machines i.e. use a binary representation.
However, this is only because the technology used i.e. transistors, naturally support
two stable states (on and off). The key thing to realise is you do not need to use a
binary representation, you need to match the number base used to the technology. For
Babbage he selected base 10, but he could of used a different base, one matched to the
40 teeth technology (cogs) used in his machine e.g. base 40, or base 20, as shown in
figures 5 and 6.

Figure 5: base selection, possible range of numbers per cog

 Mike@simplecpudesign.com : 15/07/19 Page : 7

mailto:Mike@simplecpudesign.com

Computer Architectures 8

Figure 6 : representing the value 427 in base 40, 5 and 2

How we encode instructions and data is a important consideration when designing a
computer. As discussed in lectures moving to a higher base e.g. from base 10 to base
40, can have some advantages:

• Less digits (figure wheels) needed to store a value as each cog represents more
symbols (teeth).
◦ Require less hardware to represent a number.
◦ However, makes figure wheels more complex to manufacture.
◦ Quicker, smaller rotation needed to transfer data.

However, there are also disadvantages:
• Cost - require more complex hardware to represent a digit, need to machine

more teeth per cog.

Moving to a lower base e.g. from base 10 to base 2, can also have some advantages:
• Less symbols (teeth) per cog, simpler, cheaper hardware.
•

Disadvantage
• More digits (figure wheels) needed to represent a number.

◦ Internal components have to move faster transfer the same information i.e.
less teeth per revolution.

This raises the question what is the best number base to use? Answer: application
dependent. For Babbage the main purpose of his machine was to print tables of base
10 values. Therefore, if he did use an internal base 40 representation to maximise the

 Mike@simplecpudesign.com : 15/07/19 Page : 8

mailto:Mike@simplecpudesign.com

Computer Architectures 9

range of values stored on each cog he would of needed additional hardware in the
printing sub-system to convert from base 40 into base 10. There is also the question of
the user interface i.e. the operator would need to enter base 40 values, which would be
a little tricky for the time. Note, this was one reason why early machines used a base
10 representation even when internally they used switch based technology e.g.
ENIAC.

Matching a systems hardware to the processing task required is still a relevant
question today, what is better:

• NISC, RISC, CISC, VLIW, Super-scalar, Multi-core ...

Answer : very dependent on the software being executed.

 Mike@simplecpudesign.com : 15/07/19 Page : 9

mailto:Mike@simplecpudesign.com

Computer Architectures 10

Appendix A : test code

N0 +3
N1 +4
N2 +11
N3 +5
N4 +6
N5 +17

×
L2
L4
S8
L5
L1
S9
L4
L0
S10
L1
L3
S11

-
L8
L9
S12
L10
L11
S13

÷
L12
L13
S14'
B

Figure A1 : Program listing

 Mike@simplecpudesign.com : 15/07/19 Page : 10

mailto:Mike@simplecpudesign.com

Computer Architectures 11

** Load simultaneous equation constants **

N0 +3 load memory 000 with the value 0
N1 +4 load memory 001 with the value 4
N2 +11 load memory 002 with the value 11
N3 +5 load memory 003 with the value 5
N4 +6 load memory 004 with the value 6
N5 +17 load memory 005 with the value 17

** Calculate intermediate multiplication results **

× set arithmetic operations to multiply
L2 calculate intermediate result C × E
L4
S8 store result in memory location 8
L5 calculate intermediate result F × B
L1
S9 store result in memory location 8
L4 calculate intermediate result E × A
L0
S10 store result in memory location 8
L1 calculate intermediate result B × D
L3
S11 store result in memory location 8

** Calculate intermediate subtraction results **

- set arithmetic operations to subtract
L8 transfer memory 008 to Ingress 0 (C × E)
L9 transfer memory 009 to Ingress 1 (F × B)
S12 store result of C × E - F × B to memory 012
L10 transfer memory 008 to Ingress 0 (E × A)
L11 transfer memory 009 to Ingress 1 (B × D)
S13 store result of E × A - B × D to memory 012

** Calculate final result

÷ set arithmetic operations to divide
L12 transfer memory 012 to Ingress 0
L13 transfer memory 012 to Ingress 0
S14' store quotient to memory 014

B ring bell to indicate program complete

Figure A2 : Annotated Program listing

 Mike@simplecpudesign.com : 15/07/19 Page : 11

mailto:Mike@simplecpudesign.com

	Software Lab 1 : Analytical Engine
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Summary

	Appendix A : test code

