Systems and Devices 1 Lec 2 : Data types

Before we get started ...

• Before we can design a data processing system we need to understand what data it will be processing.

Slide 2

- How will information processed by the computer be represented?
 - Range, resolution, standard, format, encoding ...
- Also, useful to understand the technology used to implement the system.
 - We can design an architecture independent of the implementation technology, but ...
 - How data is stored internally / externally (capacity), accessed and processed (time), all have a significant impact on system performance i.e. some design decisions are technology dependant.

University of York : M Freeman 2021

Slide 1

Numerical data

University of York : M Freeman 2021

 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 $427_{10} = (10^2 \times 4) + (10^1 \times 2) + (10^0 \times 7)$

• Q : How do we represent numbers?

- In mathematical numbering systems, the base or radix is the number of unique digits, including zero, that a positional numeral system uses to represent numbers
- The decimal system is most commonly used today, base ten, the maximum number a single digit can reach is 9, after which additional digits must be added to represent larger numbers

Radix

1 Y	11 ∢ Y	21 « Y	31 🗮 🏹	41 4 1	51 🍂
2 TY	12 < T	22 « T	32 🗮 🕅	42 4 11	52 🎪 🕅
3 777	13	23 ≪ 🏋	33 🗮 🕅	43 Æ TIT	53 A TT
4 🍄	14 🗸 🌄	24 🕊 🌄	₃₄ ⋘❤	44 裚 🏹	<u>~</u> ~~
5 777	15	25 🕊 👯	35 ₩ 🏋	45 🛃 👯	54- 52
6 575					55 - X T
- 3 765			///3703	40 - 42 () ()	56 - 🛠 †††
7 💞	17 4 4	27 44 49	³⁷ ≪≪ ₩	47 🛠 🍄	57 🍂 🐺
° ₩	18 🗸 🏋	28 🕊 🏋	38 🗮 🏧	48 🛠 🏋	. AT
9 🗰	19 ≺₩	29 ≪₩	39 ₩₩	49 🎝 👬	[∞] ^ [™]
10 🖌	20 ≪	30 🗮	40 💐	50 🛷	59 - 🛠 👬

Babylonian civilisation used base '60' (what's missing?)
 Positional system, encoded using two basic symbols

 University of York : M Freeman 2021

Radix

$$427_{10} = 77_{60} = (60^2 \times 0) + (60^1 \times 7) + (60^0 \times 7)$$

$$60^{2} = 3600 : 0$$

$$60^{1} = 60 : 7 (60^{1} \times 7 = 420)$$

$$60^{0} = 1 : 7 (60^{0} \times 7 = 7)$$

77₆₀ = 🐺 🐺

Converting a base 10 number to base 60

- Same process as for base 10, but now each digit can represent the values of 0 – 59, missing 0 symbol :(
- Result encoded using Babylonian symbols University of York : M Freeman 2021

Radix

Base 40 : { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 }

 $427_{10} = (40^2 \times 0) + (40^1 \times 10) + (40^0 \times 27) = (10)(27)_{40}$

 $= AR_{40} \quad (0 - 9, A - Z, ...)$

Base 5 : { 0, 1, 2, 3, 4 }

Slide 6

ilide 8

- $427_{10} = (5^3 \times 3) + (5^2 \times 2) + (5^1 \times 0) + (5^0 \times 2)$ = 32025
- Working in different number bases
 - Greater than base 10 and less than base 10. University of York : M Freeman 2021

Slide 7

Slide 5

Radix Base 16: { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F } $256 \qquad 16 \qquad 1 \\ 123_{10} = (16^2 \times 1) + (16^1 \times 7) + (16^0 \times B))$ Base 8: { 0, 1, 2, 3, 4, 5, 6, 7 } $64 \qquad 8 \qquad 1 \\ 10^{-1} = (8^2 \times 1) + (8^1 \times 7) + (8^0 \times 3))$ Base 4: { 0, 1, 2, 3 } $123_{10} = (4^3 \times 1) + (4^2 \times 3) + (4^1 \times 2) + (4^0 \times 1)$ • Quick quizzz

Q : What is the best way to represent numbers in a computer?
 Moving to a higher base : less digits, more symbols
 Moving to a lower base : more digits, less symbols

Technology

Source

• Q : What is the best way (base) to represent numbers in a computer?

- A : It depends. What base is the most efficient in terms of processing (time) and storage (capacity) for a given technology.
- Technology most commonly used today is based on the transistor : Metal Oxide Semiconductors (MOS).
- Q : If a technology has two stable operating states what base should we use? University of York : M Freeman 2021

Technology

- Q : How can we process base-2 data?
 - Luckily we already have a branch of mathematics to do this : Boolean algebra.
 - We can encode a 1 as TRUE and 0 as FALSE, but ... University of York : M Freeman 2021

Slide 11

Slide 9

- Q : How can we process base-2 data?
 - Luckily we already have a branch of mathematics to do this : Boolean algebra.
 - ► We can encode a 1 as TRUE and 0 as FALSE, but ... University of York : M Freeman 2021

Technology

 An advantage of a base-2 (binary) representation is that it minimises the number of symbols (states) a technology needs to implement.

Slide 10

Slide 12

Q : How can we communicate base-2 data

Another advantage of having less symbols is noise immunity
University of York : M Freeman 2021

Slide 14

Slide 16

Relay logic

- To explain Boolean logic gate we will use ladder logic based on relays
 - Voltage controlled switch the same as a transistor, just bigger
 University of York : M Freeman 2021

Logic gates

AND gate

University of York : M Freeman 2021

Slide 15

• OR gate

Logic gates

• XOR gate University of York : M Freeman 2021

Demo : relay logic

- The three core logic gates:
 - ► AND
 - ► OR
 - XOR
- Using only these gates we can build a computer.
 - INV can be made from an XOR gate.

0 0

0

1

0

1

0

0

0

Slide 18

lide 20

Technology

- Complementary Metal Oxide Semiconductors (CMOS)
 - P-channel : equivalent to a normally closed relay
 - Logic 1 on Gate opens contacts
 - N-channel : equivalent to a normally open relay
 - Logic 1 on Gate closes contacts University of York : M Freeman 2021

University of York : M Freeman 2021

 NOR gate : 4001 integrated circuit (IC)
 Output Z=1 when A=B=0 University of York : M Freeman 2021

Technology

 NOR gate : 4001 integrated circuit (IC)
 Output Z=1 when A=B=0 University of York : M Freeman 2021

Technology

Slide 22

+5V

0 z

0V

Name

5lide 24

Value

 NOR gate : 4001 integrated circuit (IC)
 Output Z=1 when A=B=0 University of York : M Freeman 2021

simulation or waveform traces University of York : M Freeman 2021

Slide 23

Key skills : working in base 2

Convert decimal value 99_{10} to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result								
Intermedi	ate res	sults						
11		10					•	

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

University of York : M Freeman 2021

Key skills : working in base 2

IMPORTANT Always remember to start counting from ZERO The first bit is not ONE

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Slide 26

Slide 28

Slide 27

Key skills : working in base 2

Key skills : working in base 2

Slide 32

Slide 31

Key skills : working in base 2

Convert decimal value 99_{10} to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result								
Intermed	iate res	ults						

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

C	onvert	deci	mal va	alue 9	9_{10} to	base	2	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0							
Intermedi	ate res	ults						
99 128								
$\frac{-128}{-29}$								

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Convert decimal value 99₁₀ to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1						
Intermedia	ate res	ults						
Intermedia 99	nte res 99	ults						
Intermedia 99 -128	nte res 99 -64	ults						

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

Сс	onvert	decin	nal va	alue 9	9_{10} to	base	2	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1					
Intermedia	nte res	ults						
99	99	35						
-128	- 64	-32						
-29	35	3						

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Slide 34

<u>Slide</u> 36

Slide 35

Slide 33

Key skills : working in base 2

Convert decimal value 99_{10} to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0				
Intermedia	ate res	ults						
Intermedia 99	nte res 99	ults 35	3	;				
Intermedia 99 -128	nte res 99 -64	ults 35 -32	3 -16	3				
Intermedia 99 <u>-128</u> -29	nte res 99 <u>-64</u> 35	ults 35 -32 3	3 -16 -13	; ; ;				

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

Co	onvert	decir	nal va	lue 9	9_{10} to	base	2	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0			
Intermedia	ate res	ults						
99	99	35	3	3				
-128	-64	-32	-16	-8				
-29	35	3	-13	-5				

• Converting a base 10 number to base 2 University of York : M Freeman 2021

C	onvert	decin	nal va	lue 99	Θ_{10} to	base	2	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0		
Intermedia	ate res	ults						
99 -128	99 -64	35 -32	3 -16	3 -8	3 -4			

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

Сс	onvert	decin	nal va	alue 9	9 ₁₀ to	base	2	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0	1	
Intermedia	ate res	ults						
99 <u>-128</u> -29	99 -64 35	35 -32 3	3 -16 -13	3 -8 -5	3 -4 -1	$\frac{3}{-2}$		

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Slide 38

Slide 40

Slide 39

Slide 37

Key skills : working in base 2

Convert decimal value 99_{10} to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0	1	1
Intermedia	ite res	ults						
Intermedia 99	ite res 99	ults 35	3	3	3	3	1	
Intermedia 99 -128	ite res 99 -64	ults 35 -32	3 -16	3 -8	3 -4	3 -2	1	
Intermedia 99 <u>-128</u> -29	1te res 99 <u>-64</u> 35	ults 35 <u>-32</u> 3	3 -16 -13	3 -8 -5	3 -4 -1	$\frac{3}{-2}$	$\frac{1}{-1}$	

• Converting a base 10 number to base 2 University of York : M Freeman 2021

Key skills : working in base 2

Con	vert bi	nary	value	11001	1101;	to ba	se 10	
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1
Intermedi	ate res	sults						

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Convert binary value 11001101_2 to base 10											
Bit	7	6	5	4	3	2	1	0			
Value	128	64	32	16	8	4	2	1			
Result	1	1	0	0	1	1	0	1			
Intermedi	ate res	sults									
0											
$\frac{+128}{128}$											
120											

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Key skills : working in base 2

Convert binary value 11001101_2 to base 10												
Bit	7	6	5	4	3	2	1	0				
Value	128	64	32	16	8	4	2	1				
Result	1	1	0	0	1	1	0	1				
Intermedia 0 1 +128 + 128 1	iate res 28 <u>64</u> 92	sults										

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Slide 42

Slide 44

Slide 43

Key skills : working in base 2

Convert binary value 11001101₂ to base 10

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1
Intermedi	ate res	ults						
0 - 12	28 1	92						
+128 +	64 +	0						
128 19	92 1	92						

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Key skills : working in base 2

Convert binary value 110011012 to base 10												
Bit	7	6	5	4	3	2	1	0				
Value	128	64	32	16	8	4	2	1				
Result	1	1	0	0	1	1	0	1				
Intermedi	ate res	sults										
0 12	28 1	.92	192									
$\frac{+128}{128}$ $\frac{+}{10}$	$\frac{64}{92}$ $\frac{+}{1}$	$\frac{-0}{92}$	$\frac{+0}{192}$									
120 1	<i>72</i> 1	.92	192									

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Convert binary value 11001101 ₂ to base 10												
Bit	7	6	5	4	3	2	1	0				
Value	128	64	32	16	8	4	2	1				
Result	1	1	0	0	1	1	0	1				
Intermedia	ate res	sults										
$\begin{array}{c} 0 & 12 \\ +128 & +6 \end{array}$	28 1 54 +	.92 - 0	192 + 0	192 + 8								
128 19	$\overline{)2}$ 1	92	192	200								

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Key skills : working in base 2

Convert binary value 11001101 ₂ to base 10												
Bit	7	6	5	4	3	2	1	0				
Value	128	64	32	16	8	4	2	1				
Result	1	1	0	0	1	1	0	1				
Intermed	diate res	sults										
0	128 1	.92	192	192	200							
$\frac{+128}{128}$	$\frac{+64}{192}$ $\frac{+}{1}$	-0	$\frac{+0}{192}$	$\frac{+8}{200}$	$\frac{+4}{204}$	•						
120	174 1	14	172	200	204							

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Slide 46

Slide 48

Slide 47

Slide 45

Key skills : working in base 2

Convert binary value 11001101₂ to base 10

Bit	7	6	5	4	3	2	1	0
Value	12	8 64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1
Interm	ediate r	esults						
Interm 0	ediate r 128	esults 192	192	192	200	20	4	
Interm 0 +128	ediate r 128 +64	esults 192 + 0	192 + 0	192 + 8	200 + 4	20 +	4 0	
Interm $ \begin{array}{r} 0 \\ +128 \\ 128 \end{array} $	ediate r 128 <u>+64</u> 192	esults 192 + 0 192	$192 \\ + 0 \\ 192$	$ \begin{array}{r} 192 \\ + 8 \\ \overline{200} \end{array} $	200 + 4 204	20 + 20	4 0 4	

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Key skills : working in base 2

Convert binary value 110011012 to base 10													
Bit	7	6	5	4	3	2	1	0					
Value	128	64	32	16	8	4	2	1					
Result	1	1	0	0	1	1	0	1					
Interme	ediate res	sults											
$ \begin{array}{r} 0 \\ +128 \\ 128 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92 - 0 92	192 + 0 = 192 192	$ 192 \\ + 8 \\ \overline{200} $	$\frac{20}{+2}$	$ \begin{array}{ccc} 0 & 20 \\ 4 & + \\ 4 & 20 \end{array} $)4 <u>1</u>)5					

• Converting a base 2 number to base 10 University of York : M Freeman 2021

Digit

Value

Number

 16^{2}

256

0

16¹

16

C

 16°

D

Result = $(0 \times 256) + (12 \times 16) + (13 \times 1) = 205_{10}$

Converting a base 2 number to/from base 8, 10 and 16

- Base 2, bit, { 0, 1 }, byte, nibble, MSB, LSB.
- Easy to implement using electronic circuits (switch logic).
 Less symbols
- Conversion to and from decimal representations.
- Boolean logic
 - Basic operations : INV (NOT), AND, OR, XOR.
 - Ladder logic, Circuit symbols. __University of York : M Freeman 2021