Before we get started ..

Systems and Devices 1 Lec 2 : Data types

- Before we can design a data processing system we need to understand what data it will be processing.
- How will information processed by the computer be represented?
- Range, resolution, standard, format, encoding ...
- Also, useful to understand the technology used to implement the system.
- We can design an architecture independent of the implementation technology, but ...
- How data is stored internally / externally (capacity), accessed and processed (time), all have a significant impact on system performance i.e. some design decisions are technology dependant.

University of York : M Freeman 2021

Numerical data

$$
\begin{gathered}
\{0,1,2,3,4,5,6,7,8,9\} \\
427_{10}=\left(10^{2} \times 4\right)+\left(10^{1} \times 2\right)+\left(10^{0} \times 7\right)
\end{gathered}
$$

- Q : How do we represent numbers?
- In mathematical numbering systems, the base or radix is the number of unique digits, including zero, that a positional numeral system uses to represent numbers
- The decimal system is most commonly used today, base ten, the maximum number a single digit can reach is 9 , after which additional digits must be added to represent larger numbers
- Babylonian civilisation used base '60' (what's missing?)
- Positional system, encoded using two basic symbols

Radix

$$
427_{10}=77_{60}=\left(60^{2} \times 0\right)+\left(60^{1} \times 7\right)+\left(60^{0} \times 7\right)
$$

$$
\begin{array}{lll}
60^{2}=3600 & : & \\
60^{1}=60 & : 7 & \left(60^{1} \times 7=420\right) \\
60^{0}=1 & : 7 & \left(60^{0} \times 7=7\right)
\end{array}
$$

- Converting a base 10 number to base 60
- Same process as for base 10 , but now each digit can represent the values of $0-59$, missing 0 symbol :(
- Result encoded using Babylonian symbols

University of York : M Freeman 2021

Radix

$$
\begin{aligned}
\text { Base } 40:\{ & 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, \\
& 17,18,19,20,21,22,23,24,25,26,27,28,29,30, \\
& 31,32,33,34,35,36,37,38,39\} \\
427_{10}= & \left(40^{2} \times 0\right)+\left(40^{1} \times 10\right)+\left(40^{0} \times 27\right)=(10)(27)_{40} \\
= & \mathrm{AR}_{40}(0-9, \mathrm{~A}-\mathrm{Z}, \ldots)
\end{aligned}
$$

Base 5 : $\{0,1,2,3,4\}$

$$
\begin{aligned}
427_{10} & =\left(5^{3} \times 3\right)+\left(5^{2} \times 2\right)+\left(5^{1} \times 0\right)+\left(5^{0} \times 2\right) \\
& =3202_{5}
\end{aligned}
$$

- Working in different number bases
- Greater than base 10 and less than base 10.

University of York : M Freeman 2021

Radix

- Quick quizzz

Q : What is the best way to represent numbers in a computer?

- Moving to a higher base : less digits, more symbols
- Moving to a lower base : more digits, less symbols

Technology

: What is the best way (base) to represent numbers in a computer?

- A : It depends. What base is the most efficient in terms of processing (time) and storage (capacity) for a given technology.
- Technology most commonly used today is based on the transistor : Metal Oxide Semiconductors (MOS).
- Q: If a technology has two stable operating states what base should we use?

University of York : M Freeman 2021
Technology

- Q : How can we process base-2 data?
- Luckily we already have a branch of mathematics to do this : Boolean algebra.
- We can encode a 1 as TRUE and 0 as FALSE, but University of York : M Freeman 2021

- Q : How can we process base-2 data?
- Luckily we already have a branch of mathematics to do this : Boolean algebra.
- We can encode a 1 as TRUE and 0 as FALSE, but .

University of York : M Freeman 2021

Technology

- An advantage of a base-2 (binary) representation is that it minimises the number of symbols (states) a technology needs to implement.

- Q : How can we communicate base-2 data
- Another advantage of having less symbols is noise immunity

Relay logic

Logic gates

- AND gate

$$
\text { University of York : M Freeman } 2021
$$

Logic gates

- OR gate

- To explain Boolean logic gate we will use ladder logic based on relays
- Voltage controlled switch the same as a transistor, just bigger

University of York : M Freeman 2021

Logic gates

- XOR gate

Demo : relay logic

- The three core logic gates:
- AND
- OR
- XOR
- Using only these gates we can build a computer.
- INV can be made from an XOR gate.

University of York : M Freeman 2021

Technology

- Complementary Metal Oxide Semiconductors (CMOS)
- P-channel : equivalent to a normally closed relay - Logic 1 on Gate opens contacts
- N-channel : equivalent to a normally open relay - Logic 1 on Gate closes contacts

Technology

- NOR gate : 4001 integrated circuit (IC)
- Output $Z=1$ when $A=B=0$

University of York : M Freeman 2021

Technology

- NOR gate : 4001 integrated circuit (IC)
- Output $\mathrm{Z}=1$ when $\mathrm{A}=\mathrm{B}=0$

Technology

- NOR gate : 4001 integrated circuit (IC)
- Output $\mathrm{Z}=1$ when $\mathrm{A}=\mathrm{B}=0$

University of York : M Freeman 2021

Example : Logic.zip

- Analyse of logic gates is normally performed through simulation or waveform traces

University of York : M Freeman 2021

Key skills : working in base 2

Convert decimal value 99_{10} to base 2

Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result								

Intermediate results

Key skills : working in base 2

- Converting a base 10 number to base 2

Key skills : working in base 2

- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

MPORTANTI

Always remember to start counting from ZERO The first bit is not ONE

Key skills : working in base 2

- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

- Converting a base 10 number to base 2

Key skills : working in base 2

Key skills : working in base 2

- Converting a base 10 number to base 2

University of York : M Freeman 2021

- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

- Converting a base 10 number to base 2

Key skills : working in base 2
Key skills : working in base 2

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1						

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1					

Intermediate results
Intermediate results

$$
\begin{array}{rr}
99 & 99 \\
-128 & -64 \\
\hline & -29
\end{array} \begin{array}{r}
35
\end{array}
$$

$$
\begin{array}{rrr}
99 & 99 & 35 \\
\frac{-128}{-29} & \frac{-64}{35} & \frac{-32}{3}
\end{array}
$$

- Converting a base 10 number to base 2
- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0				

Key skills : working in base 2

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0			
Intermediate results								
99	99	35	3					
-128	$\underline{-64}$	-32	-16					
	35		-13					

- Converting a base 10 number to base 2

Key skills : working in base 2
Key skills : working in base 2

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0		

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0	1	

Intermediate results

$$
\begin{array}{rrrrrr}
99 & 99 & 35 & 3 & 3 & 3 \\
\frac{-128}{-29} & \frac{-64}{35} & \frac{-32}{3} & \frac{-16}{-13} & \frac{-8}{-5} & \frac{-4}{-1}
\end{array}
$$

$$
\begin{array}{rrrrrrr}
99 & 99 & 35 & 3 & 3 & 3 & 3 \\
\frac{-128}{-29} & \frac{-64}{35} & \frac{-32}{3} & \frac{-16}{-13} & \frac{-8}{-5} & \frac{-4}{-1} & \frac{-2}{1}
\end{array}
$$

- Converting a base 10 number to base 2

University of York : M Freeman 2021

Key skills : working in base 2

Convert decimal value 99_{10} to base 2								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	0	1	1	0	0	0	1	1

Intermediate results

$$
\begin{array}{rrrrrrrr}
99 & 99 & 35 & 3 & 3 & 3 & 3 & 1 \\
\frac{-128}{-29} & \frac{-64}{35} & \frac{-32}{3} & \frac{-16}{-13} & \frac{-8}{-5} & \frac{-4}{-1} & \frac{-2}{1} & \frac{-1}{0}
\end{array}
$$

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

Key skills : working in base 2

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

$\begin{array}{r}0 \\ +128 \\ \hline 128\end{array}$

$$
\begin{array}{rr}
0 & 128 \\
+128 & +64 \\
\hline 128 & 192
\end{array}
$$

- Converting a base 2 number to base 10

University of York : M Freeman 2021

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

$$
\begin{aligned}
& \begin{array}{lll}
0 & 128 & 192
\end{array} \\
& \frac{+128}{128} \frac{+64}{192} \frac{+0}{192}
\end{aligned}
$$

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

0	128	192	192
+128	$\frac{+64}{128}$	$\frac{+0}{192}$	$\frac{+0}{192}$

Key skills : working in base 2
Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

0	128	192	192	192
$\frac{+128}{128}$	$\frac{+64}{192}$	$\frac{+0}{192}$	$\frac{+0}{192}$	$\frac{+8}{200}$

Intermediate results

0	128	192	192	192	200
+128	$\frac{+64}{192}$	$\frac{+0}{192}$	$\frac{+0}{192}$	$\frac{+8}{200}$	$\frac{+4}{204}$

- Converting a base 2 number to base 10

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

$$
\begin{array}{rcccccc}
0 & 128 & 192 & 192 & 192 & 200 & 204 \\
+128 & \frac{+64}{128} & \frac{+0}{192} & \frac{+0}{192} & \frac{+8}{200} & \frac{+4}{204} & \frac{+0}{204}
\end{array}
$$

Key skills : working in base 2

Convert binary value 11001101_{2} to base 10								
Bit	7	6	5	4	3	2	1	0
Value	128	64	32	16	8	4	2	1
Result	1	1	0	0	1	1	0	1

Intermediate results

$$
\begin{array}{rccccccc}
0 & 128 & 192 & 192 & 192 & 200 & 204 & 204 \\
+128 & \frac{+64}{192} & \frac{+0}{192} & \frac{+0}{192} & \frac{+8}{200} & \frac{+4}{204} & \frac{+0}{204} & \frac{+1}{205}
\end{array}
$$

- Converting a base 2 number to base 10

Key skills : working in base 2

Base 2 : $\{0,1\}$

$\square_{10}=\left(2^{5} \times 1\right)+\left(2^{4} \times 1\right)+\left(2^{3} \times 0\right)+\left(2^{2} \times 0\right)+\left(2^{1} \times 1\right)+\left(2^{0} \times 0\right)$

- Quick quizzz

Key skills : working in base 2

Dec	Hex	Bin
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111

Dec	Hex	Bin
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Dec	Octal	Bin
0	0	000
1	1	001
2	2	010
3	3	011
4	4	100
5	5	101
6	6	110
7	7	111

- Other commonly used bases

- Hexadecimal : base 16, binary string split into nibbles - $205_{10}=0 \times C D$ or C_{16}
- Octal : base 8, binary string split into triples.
- $205_{10}=0315$ or 315_{8}

University of York : M Freeman 2021

Key skills : working in base 2

Digit	16^{2}	16^{1}	16^{0}
Value	256	16	1
Number	0	C	D
Result $=(0 \times 256)+(12 \times 16)+(13 \times 1)=205_{10}$			

- Converting a base 2 number to/from base 8, 10 and 16

Summary

- Key concepts :
- Number bases
- Positional numeral system uses to represent numbers.
- Working in different number bases: 2, 8, 10 and 16.
- Binary number representation
- Base 2, bit, \{ 0,1 \}, byte, nibble, MSB, LSB.
- Easy to implement using electronic circuits (switch logic). - Less symbols
- Conversion to and from decimal representations.
- Boolean logic
- Basic operations : INV (NOT), AND, OR, XOR.
- Ladder logic, Circuit symbols.

