Before we get started ...

Systems and Devices 1 Lec 3a:

 Combinatorial Logic- We live in the fourth generation of computers:
- Thermionic value, Transistor, IC, Micro-processor
- Default technology: transistor, therefore preferred number base: binary, processed using Boolean logic gate.
- How do we process data within our computer?
- Identify the state of the computer e.g. what operation it is currently performing, what data has been selected to be processed and what results are produced?

University of York : M Freeman 2021

SimpleCPU_v1a

- Block diagram
- We need to implement each functional block using logic gates i.e. as combinatorial logic circuits.

SimpleCPU_v1a

- Block diagram
- Status bits : to control the flow of information in a computer we need to test its state i.e. data values.

Logic gates

Example : NOR_8.zip

Quick quizzz: what logic gate could be used to test if :

- Two bits are equal

$$
A=B
$$

- Two bits are both zero
$A=B=0$
- At least one bit is zero $\quad A=0$ OR $B=0$

- To test if an 8 bit value is zero we can use an 8 bit NOR gate.

NOR	A	B	Z
	0	0	1
	0	1	0
1	0	0	
	1	1	0

University of York : M Freeman 2021

SimpleCPU_v1a

- Block diagram
- Multiplexer : a core requirement of any computer is to route / move data between functional blocks.

Multiplexers

- 2:1 1 bit data multiplexer (MUX)
- Gate level implementation and Circuit Symbol
- IF SEL = 0 THEN Z = A
- IF SEL = 1 THEN $Z=B$

Multiplexers

- 2:1 1 bit data multiplexer (MUX)
- Gate level implementation and Circuit Symbol
- IF SEL = 0 THEN Z = A
- IF SEL = 1 THEN $Z=B$

Multiplexers

- 2:1 1 bit data multiplexer (MUX)
- Gate level implementation and Circuit Symbol
- IF SEL = 0 THEN $Z=A$
- IF SEL = 1 THEN $Z=B$

2:1 1 bit data multiplexer (MUX)

- Gate level implementation and Circuit Symbol
- IF SEL = 0 THEN Z = A
- IF SEL = 1 THEN $Z=B$

Multiplexers

Multiplexers

- 2:1 1 bit data multiplexer (MUX)
- Gate level implementation and Circuit Symbol
- IF SEL = 0 THEN $Z=A$
- IF SEL = 1 THEN $Z=B$

SimpleCPU_v1a

- Problem : the two highlighted multiplexers need to select between two 8 bit values.
- May also need to select between more than two input sources.

University of York : M Freeman 2021

Multiplexers

- 2:1 x 2bit MUX: Parallel MUX to increase width
- $3: 1 \times 1$ bit MUX: Serial MUX to increase inputs

University of York : M Freeman 2021

Multiplexers

- Quick quiz: complete the truth table
- Bonus question : what two logic gates can be used to implement this circuit?

University of York : M Freeman 2021

Example : MUX_2.zip

- Simulation
- MUX_2_8: a two input 8 bit multiplexer
- MUX_4_8 : a four input 8 bit multiplexer

SimpleCPU_v1a

- Block diagram
- Encoders / Decoders : within the processor information is stored using a range of binary representations.

University of York : M Freeman 2021

Binary encoding

Decimal	Binary	$B C D$	One-hot
0	00000000	00000000	0000000000000001
1	00000001	00000001	0000000000000010
2	00000010	00000010	0000000000000100
3	00000011	00000011	0000000000001000
4	00000100	00000100	0000000000010000
5	00000101	00000101	0000000000100000
6	00000110	00000110	0000000001000000
7	00000111	00000111	0000000010000000
8	00001000	00001000	0000000100000000
9	00001001	00001001	0000001000000000
10	00001010	00010000	0000010000000000
11	00001011	00010001	0000100000000000
12	00001100	00010010	0001000000000000
13	00001101	00010011	0010000000000000
14	00001110	00010100	0100000000000000
15	00001111	00010101	1000000000000000

- Alternative binary representations : Binary Coded Decimal (BCD) and One-hot encoding.

Encoder / Decoder

- A two bit binary to One-hot encoder and decoder

Encoder / Decoder

- A two bit binary to One-hot encoder and decoder

Encoder / Decoder

- A two bit binary to One-hot encoder and decoder

Encoder / Decoder

- A two bit binary to One-hot encoder and decoder

Encoder / Decoder

- A two bit binary to One-hot encoder and decoder

Decoder

- 2bit Binary to One-hot decoder

Decoder
Decoder

- 2bit Binary to One-hot decoder

- 2bit Binary to One-hot decoder

Decoder

- 2bit Binary to One-hot decoder

Decoder

- 2bit Binary to One-hot decoder

Encoder

- 2bit One-hot to Binary encoder
- One-hot representation simplifies logic design i.e. only 1 bit is ever set.

- Identify when output is a logic 1 then join active inputs with OR gates.

University of York : M Freeman 2021

Encoder

- 2bit One-hot to Binary encoder
- One-hot representation simplifies logic design i.e. only 1 bit is ever set.

- Identify when output is a logic 1 then join active inputs with OR gates.

University of York : M Freeman 2021

Encoder

- 2bit One-hot to Binary encoder
- One-hot representation simplifies logic design i.e. only 1 bit is ever set.

- Identify when output is a logic 1 then join

- 2bit One-hot to Binary encoder
- One-hot representation simplifies logic design i.e. only 1 bit is ever set.

Identify when output is a logic 1 then join active inputs with OR gates.

University of York : M Freeman 2021 active inputs with OR gates.

Encoder

- 2bit One-hot to Binary encoder
- One-hot representation simplifies logic design i.e. only 1 bit is ever set.

Encoder / Decoder

Which of the following is a valid one-hot value?

A) 00000000	B) 01000000	C) 10000010

An instruction is represented within a computer by a two bit binary number:
A B AB
$01=$ Add $\quad 00=$ Subtract
$10=$ Multiply $\quad 11=$ Divide
This two bit code is decoded using the onehot_decoder_4 component to produce control signals $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2$ and S 3 . Complete tge truth table below, identifying what instruction is being processed.

- Quick quizzz

Example : onehot_encoder.zip

- Simulation
- 2 bit input A, B
- 2 bit output Y1, Y0

SimpleCPU_V1a

- Block diagram
- ALU : a core requirement of any computer is to process data i.e. the Arithmetic and Logic unit, at its heart is the ADDER.

Key skills : working in base 2

- Adding two binary numbers : 53 + 28
- Positive, integer

University of York : M Freeman 2021

Key skills : working in base 2

- Adding two binary numbers : $53+28$
- Positive, integer

University of York : M Freeman 2021

Key skills : working in base 2

- Adding two binary numbers : $53+28$
- Positive, integer

University of York : M Freeman 2021

Key skills : working in base 2

- Adding two binary numbers : $53+28$
- Positive, integer

Key skills : working in base 2

- Adding two binary numbers : 53 + 28
- Positive, integer

University of York : M Freeman 2021

Key skills : working in base 2

- Adding two binary numbers : $53+28$
- Positive, integer

Key skills : working in base 2

- Adding two binary numbers : $53+28$
- Positive, integer

Binary addition

- Adding two binary numbers : $53+28$
- Positive, integer

Binary addition
Binary addition

- Half and full adder
- Basic components can be combined into larger circuits University of York : M Freeman 2021

- Full Adder operation

University of York : M Freeman 2021

Binary addition

- Full Adder operation
- $A=0, B=1, C=1$

Binary addition

- Full Adder operation
- Update outputs with stable values

Binary addition

Binary addition

- Full Adder operation
- If input not known, trace signal back to source

University of York : M Freeman 2021

- Full Adder operation
- Update outputs with stable values

University of York : M Freeman 2021

Binary addition

- Full Adder operation
- Update outputs with stable values

Binary addition

- Full Adder operation
- $A=0, B=1, C=1$
- Sum=0, Carry=1

Binary addition

- Important limitation : critical path
- Worst case delay path, a signal needs to travel through three gate to produce a stable output.

University of York : M Freeman 2021

Binary addition

- Quick Quizzz
- Which rank these circuits in order of critical path delay, quickest to slowest.

University of York : M Freeman 2021

Summary

- Key concepts :
> Fundamental building blocks of a computer:
- Multiplexer (bit and byte), Encoder, Decoder, Adder
- Binary encodings
- Binary, BCD, One-hot, Gray code
- Link : https://en.wikipedia.org/wiki/Gray_code
- Binary arithmetic
- Half adder, Full adder, Ripple adder, Carry, Overflow.
- Hardware limitations : Critical Path Delay (CPD)
- Each logic gate will take some time to update its output for a change on its input i.e. propagation delay.
- Operation of simple combinatorial logic circuits

