
University of York : M Freeman 2021University of York : M Freeman 2021

Systems and Devices 1Systems and Devices 1
Lec 5c : The ComputerLec 5c : The Computer

Slide 1

University of York : M Freeman 2021University of York : M Freeman 2021

Before we get started ...Before we get started ...
● We now have a “fully functioning” computer.We now have a “fully functioning” computer.

► 12 instructions12 instructions
♦ MOVE, LOAD, STOREMOVE, LOAD, STORE
♦ ADD, SUB, ADDM, SUBMADD, SUB, ADDM, SUBM
♦ Bitwise-ANDBitwise-AND
♦ JUMP, JUMPZ, JUMPNZJUMP, JUMPZ, JUMPNZ

► 3 addressing modes, 2 data types3 addressing modes, 2 data types
♦ Immediate, Absolute, Direct.Immediate, Absolute, Direct.
♦ Signed, Unsigned 8-bit data types.Signed, Unsigned 8-bit data types.

► 256 x 16bit memory256 x 16bit memory
♦ 16-bit instructions, 8-bit variables16-bit instructions, 8-bit variables

● What can we do with it? How can the computer What can we do with it? How can the computer
interact with the real world?interact with the real world?

Slide 2

University of York : M Freeman 2021University of York : M Freeman 2021

Instruction setInstruction set

● SimpleCPU machine-level instructionsSimpleCPU machine-level instructions
► Everything has to be implement from these instructionsEverything has to be implement from these instructions

Slide 3

University of York : M Freeman 2021University of York : M Freeman 2021

Demo : System TestDemo : System Test

● Before we can write our “first” program we need to test Before we can write our “first” program we need to test
if the hardware is working correctly e.g. are there any if the hardware is working correctly e.g. are there any
damaged ICs or missing wires, …damaged ICs or missing wires, …

● Therefore, our first program is a test program: test.asmTherefore, our first program is a test program: test.asm
► Lets go through the code …Lets go through the code …

Slide 4

University of York : M Freeman 2021University of York : M Freeman 2021

Demo : Hello WorldDemo : Hello World
● Traditionally the Traditionally the

first program you first program you
write on any new write on any new
machine is one machine is one
that prints that prints
“Hello World”.“Hello World”.
► The FPGA board The FPGA board

used to implement used to implement
SimpleCPU does SimpleCPU does
not have a displaynot have a display

► Two choices:Two choices:
♦ LCD LCD
♦ Serial terminalSerial terminal

Slide 5

University of York : M Freeman 2021University of York : M Freeman 2021

GPIOGPIO
● To interface the processor to the outside world we To interface the processor to the outside world we

commonly use General Purpose Input Output pins.commonly use General Purpose Input Output pins.
► Programmer controlled digital interface devices that can Programmer controlled digital interface devices that can

read inputs and control outputs in the real world.read inputs and control outputs in the real world.
► Software controlled IO, no hardware support.Software controlled IO, no hardware support.

● Alternatively, application specific peripheral devices:Alternatively, application specific peripheral devices:
► Parallel Port : data transferred using multiple wires e.g. Parallel Port : data transferred using multiple wires e.g.

comparable to a bus inside the processor, additional comparable to a bus inside the processor, additional
hardware support to synchronise data transfers, buffer data.hardware support to synchronise data transfers, buffer data.

► Serial Port : data transferred using a single wire i.e. one bit Serial Port : data transferred using a single wire i.e. one bit
at a time, additional hardware support to convert parallel at a time, additional hardware support to convert parallel
data to serial and vice versa, hardwired control logic, data data to serial and vice versa, hardwired control logic, data
buffers etc.buffers etc.

Slide 6

University of York : M Freeman 2021University of York : M Freeman 2021

Parallel PortParallel Port

● Memory mapped (address 0xFF) output portMemory mapped (address 0xFF) output port
► 8 bit register, Q outputs drive external signals connected 8 bit register, Q outputs drive external signals connected

to LCD displayto LCD display

 RAM

0x00

0xFE

 GPO0xFF

Memory Map

Slide 7

University of York : M Freeman 2021University of York : M Freeman 2021

Parallel PortParallel Port

● Address decoding logic only enables output register Address decoding logic only enables output register
when the processor writes to address 0xFF.when the processor writes to address 0xFF.
► Q outputs updated with value on DATA_OUT bus (bits 7:0)Q outputs updated with value on DATA_OUT bus (bits 7:0)

Slide 8

University of York : M Freeman 2021University of York : M Freeman 2021

Parallel PortParallel Port

● Quick Quizz (be careful trick question)Quick Quizz (be careful trick question)
► Can the processor read the output of the parallel port?Can the processor read the output of the parallel port?

♦ What happens when the CPU writes to ADDR 0xFF?What happens when the CPU writes to ADDR 0xFF?
♦ What happens when the CPU reads from ADDR 0xFF? What happens when the CPU reads from ADDR 0xFF?

 RAM

0x00

0xFE

 GPO0xFF

Memory Map

Slide 9

University of York : M Freeman 2021University of York : M Freeman 2021

Text charactersText characters

● ASCII: 95 alpha-numeric, 33 control charactersASCII: 95 alpha-numeric, 33 control characters
► Used in a later lab.Used in a later lab.

Slide 10

University of York : M Freeman 2021University of York : M Freeman 2021

Parallel PortParallel Port

● LCD module is controlled using a 6 bit busLCD module is controlled using a 6 bit bus
► E (7) : enable, active high, indicates that RS and DATA E (7) : enable, active high, indicates that RS and DATA

lines are valid and can be read.lines are valid and can be read.
► RS (6) : register select, 0 = command, 1 = character dataRS (6) : register select, 0 = command, 1 = character data
► Data (5:2) : 4 bit data bus, chars transferred as two nibbles.Data (5:2) : 4 bit data bus, chars transferred as two nibbles.

Slide 11

University of York : M Freeman 2021University of York : M Freeman 2021

Demo : Hello WorldDemo : Hello World

● Software defined parallel portSoftware defined parallel port
► Bit flipping of control lines, bitwise operations etc.Bit flipping of control lines, bitwise operations etc.

Slide 12

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : SimpleCPU_PIOWorked Example : SimpleCPU_PIO

● Parallel IO (PIO)Parallel IO (PIO)
► Run-time : approximately 700 us at 10MHzRun-time : approximately 700 us at 10MHz

Slide 13

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : SimpleCPU_PIOWorked Example : SimpleCPU_PIO

● Lets go through the code …Lets go through the code …

Slide 14

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : SimpleCPU_PIOWorked Example : SimpleCPU_PIO

● Alternative implementation using MACROsAlternative implementation using MACROs
► We will look at the M4 pre-processor in a later Lecture/LabWe will look at the M4 pre-processor in a later Lecture/Lab

Slide 15

University of York : M Freeman 2021University of York : M Freeman 2021

Programming structuresProgramming structures

● Programs so far have had a single basic block Programs so far have had a single basic block
of code, missing: selection and iteration (lab6).of code, missing: selection and iteration (lab6).
► Identify character, 0=False, 1=True.Identify character, 0=False, 1=True.

Slide 16

University of York : M Freeman 2021University of York : M Freeman 2021

Serial PortSerial Port

● RS-232/V.24 pin out on a DB9 connectorRS-232/V.24 pin out on a DB9 connector

Slide 17

University of York : M Freeman 2021University of York : M Freeman 2021

Serial PortSerial Port

● RS232 : Point–to–point connection, 15M, 256KbpsRS232 : Point–to–point connection, 15M, 256Kbps
► +3 to +12 volts indicates an "ON or 0-state (SPACE)+3 to +12 volts indicates an "ON or 0-state (SPACE)
► -3 to -12 volts indicates an "OFF" 1-state (MARK) -3 to -12 volts indicates an "OFF" 1-state (MARK)

● Inverter drivers converting +12 / -12 voltages to logic 0 / 1Inverter drivers converting +12 / -12 voltages to logic 0 / 1
► MAX232 driver / receiverMAX232 driver / receiver

Slide 18

University of York : M Freeman 2021University of York : M Freeman 2021

Serial PortSerial Port

● Serial data link, two wire interface: RxD, TxD + GNDSerial data link, two wire interface: RxD, TxD + GND
► ASCII data converted into a serial data packet e.g. letter “H”ASCII data converted into a serial data packet e.g. letter “H”

♦ Packet divided into equal time slices, each bit allocated one slice. Packet divided into equal time slices, each bit allocated one slice.
♦ Communications speed, bits per second (bps) e.g. 300bps = 3.3msCommunications speed, bits per second (bps) e.g. 300bps = 3.3ms

Slide 19

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : SimpleCPU_SIOWorked Example : SimpleCPU_SIO

● Serial IO (SIO)Serial IO (SIO)
► Run-time : approximately 300ms at 10MHzRun-time : approximately 300ms at 10MHz

Slide 20

University of York : M Freeman 2021University of York : M Freeman 2021

Hello WorldHello World

● Bit bangingBit banging
► ““slang for various techniques slang for various techniques

for data transmission in which for data transmission in which
software is used to generate software is used to generate
and process signals instead of and process signals instead of
dedicated hardware”dedicated hardware”

► Processor running at 10MHz, Processor running at 10MHz,
therefore, bit-rate limited to a therefore, bit-rate limited to a
few 100 bps.few 100 bps.

Slide 21

University of York : M Freeman 2021University of York : M Freeman 2021

Serial PortSerial Port

● Pseudo code Pseudo code
and flowchartand flowchart

● Need to:Need to:
► Select Select

each BITeach BIT
► Select Select

each CHAReach CHAR

Slide 22

University of York : M Freeman 2021University of York : M Freeman 2021

Select BITSelect BIT

● Q: how can we shift ASCII data in the ACC right?Q: how can we shift ASCII data in the ACC right?

Slide 23

University of York : M Freeman 2021University of York : M Freeman 2021

Serial PortSerial Port
● A : write a program to divide the character data by 2 A : write a program to divide the character data by 2

e.g. simple repeated subtraction.e.g. simple repeated subtraction.
► Count how many times 2 can be subtracted without Count how many times 2 can be subtracted without

generating a carry.generating a carry.

● Q : how can we read character data from memory i.e. Q : how can we read character data from memory i.e.
implement data = message[i]implement data = message[i]

● A : we can not i.e. at the moment we only have an A : we can not i.e. at the moment we only have an
absolute addressing mode LOAD instruction.absolute addressing mode LOAD instruction.
► Read address can not be changed at runtime e.g. LOAD 55, Read address can not be changed at runtime e.g. LOAD 55,

we can not use a variable to address memory i.e. M[i].we can not use a variable to address memory i.e. M[i].
► However, we can bodge this by using self modifying code :)However, we can bodge this by using self modifying code :)

Slide 24

University of York : M Freeman 2021University of York : M Freeman 2021

Memory : Load / StoreMemory : Load / Store

● For the simpleCPU_v1a we take the simple solutionFor the simpleCPU_v1a we take the simple solution
► Only read and write to lower 8-bits of a memory locations, Only read and write to lower 8-bits of a memory locations,

downside wastes memory i.e. each time you declare a downside wastes memory i.e. each time you declare a
variable we will waste 8-bits.variable we will waste 8-bits.

ACC only
8bits

Slide 25

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Set the high byte of data_out = 0x00Set the high byte of data_out = 0x00

Slide 26

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Set the high byte of data_out = 0x00Set the high byte of data_out = 0x00

Slide 27

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Set the high byte of data_out = 0x40Set the high byte of data_out = 0x40

Slide 28

University of York : M Freeman 2021University of York : M Freeman 2021

Quick QuizzzQuick Quizzz

● If we did hardwire the data_out bus to 0x40 || ACC, If we did hardwire the data_out bus to 0x40 || ACC,
what does the above code do?what does the above code do?

Slide 29

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Set the high byte of data_out = IR[11:8] || 0000Set the high byte of data_out = IR[11:8] || 0000

Slide 30

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Set the high byte of data_out = IR[11:8] || 0000Set the high byte of data_out = IR[11:8] || 0000

Slide 31

University of York : M Freeman 2021University of York : M Freeman 2021

SimpleCPU_v1aSimpleCPU_v1a

● Self-modifying code, what can go wrong :)Self-modifying code, what can go wrong :)
► ““New” 2-operand STORE instructionNew” 2-operand STORE instruction

Slide 32

University of York : M Freeman 2021University of York : M Freeman 2021

A Wheeler JUMPA Wheeler JUMP

● The first implementation of a function call.The first implementation of a function call.
► Quick Quizz : how does this code work?Quick Quizz : how does this code work?

CODE:
MOVE CODE
JUMP FUNC

 ...

FUNC:
ADD 2
STORE 8 EXIT
LOAD DATA
ADDM DATA

EXIT:
JUMP EXIT

DATA:
22

10 MOVE 10
11 JUMP 50
12 ...

50 ADD 2
51 STORE 8 54
52 LOAD 55
53 ADDM 55

54 JUMP 54

55 22

DATA = 22
X = FUNC(DATA)

FUNC:
RETURN DATA×2

Slide 33

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : SimpleCPU_SIOWorked Example : SimpleCPU_SIO

● Lets go through the code ...Lets go through the code ...

Slide 34

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : UARTWorked Example : UART

● Universal Asynchronous Receiver Transmitter unitUniversal Asynchronous Receiver Transmitter unit
► A hardware implemented serial portA hardware implemented serial port

Slide 35

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : UARTWorked Example : UART

● Three memory mapped registersThree memory mapped registers
► TX data : write only, triggers automatic TX of value TX data : write only, triggers automatic TX of value
► RX data : read only, return received 8bit value (ASCII char)RX data : read only, return received 8bit value (ASCII char)
► Status : read only, return status of RX, TX and Buffer.Status : read only, return status of RX, TX and Buffer.

 SYMBOL READ WRITE

Slide 36

University of York : M Freeman 2021University of York : M Freeman 2021

Worked Example : UARTWorked Example : UART

● Lets go through the code …Lets go through the code …
► A lot simpler when its all done in hardware :)A lot simpler when its all done in hardware :)

Slide 37

University of York : M Freeman 2021University of York : M Freeman 2021

SummarySummary
● Key conceptsKey concepts

► Control logicControl logic
♦ Representing processor stateRepresenting processor state
♦ Generating control signalsGenerating control signals

► Character (text) data types : ASCIICharacter (text) data types : ASCII
► Parallel and Serial ports (IO)Parallel and Serial ports (IO)

♦ Memory maps and memory mapped devicesMemory maps and memory mapped devices
► Assembly language programmingAssembly language programming

♦ Three case studies:Three case studies:
■ Easy : multiply 10 by 3Easy : multiply 10 by 3
■ Medium : Hello World LCDMedium : Hello World LCD
■ Hard : Hello World Serial (covered again in lab)Hard : Hello World Serial (covered again in lab)

Slide 38

