
ABEL/CUPL
Design File
Conversion

Application
Note

Rev. 3303A–PLD–08/02
Converting ABEL Design Files to CUPL

This application note is intended to assist users in converting designs written in ABEL-
HDL language to CUPL. It also includes an example in ABEL and equivalent repre-
sentation in CUPL. Atmel® no longer offers ABEL compilers. Instead users are
encouraged to convert their designs to CUPL and use Atmel Design software tools
such as Atmel-WinCUPL™ or ProChip Designer™.

Background for ABEL and CUPL
ABEL-HDL and CUPL-HDL are behavioral design languages used to describe logic
circuits at a high level. ABEL evolved over the eighties and early nineties as a lan-
guage that was written to take advantage of the architectural features of an EPLD. As
late as 1995, Atmel continued to offer ABEL V5.1 (DOS-based program). This
required a Dongle (Key from Data I/O™ Corp. WA) to be plugged into the parallel port
of a PC. Subsequently, Atmel offered an EDA package called Atmel-Synario™ that
included a windows version of the ABEL compiler until the year 2000. Atmel-Synario
V4.11 was an OEM version specific for Atmel EPLDs and ABEL 6.5 (windows version)
was the last version of ABEL-HDL offered by Atmel as part of this package. Subse-
quently, Data I/O spun off Synario as an EDA company and a little later Synario's
assets became a part of MINC Inc., another EDA Company. MINC then re-sold spe-
cific tools from the Synario package to Xilinx®, Inc.

Logical Devices, Inc. developed CUPL and the structure of the language has not
changed much for the last two decades. Atmel offered a DOS version of CUPL until
the late nineties. The most recent DOS version of Atmel-WinCUPL shipped by Atmel
was Rev 4.8. Subsequently a windows version of CUPL (Rev 5.x) was offered and
called Atmel-WinCUPL.
1

Compiler and Tool
Options

The CUPL compiler is available in Atmel-WinCUPL Version 5.2.16 software as well as
part of Atmel-ProChip Designer that uses a Third Party tool from Altium™ called Design
Explorer™ 99SE.

For simple designs, users are encouraged to use Atmel-WinCUPL which is a free tool
and available for download from Atmel's website.

The ABEL compiler (Rev. 6.5) used to compile the ABEL example was part of Atmel-
Synario Version 4.11 software, which is no longer offered.

Process of Conversion of
an ABEL Example File to
CUPL

The conversion is presented in the form of a Table (Table 1) and shows comparative
implementation in ABEL and CUPL. Users can first go through this example and then
refer to “Overview of Syntax Differences between ABEL and CUPL” on page 7 for Syn-
tax details. Simulation files are not required for every design unless users specifically
want to functionally generate a set of Test Vectors that can be applied on a Third Party
Programmer hardware. The process of writing Test vector files is listed in the section
titled “Converting an ABEL Simulation Input File to CUPL” on page 5.

Please note that in ABEL, it is possible to include Test vectors as part of the main
source file. The ABEL compiler will then extract the test vectors (.TMV) for simulation
purposes and to append the test vectors to the Jedec file.

Description of Example The following example in Table 1 shows how to implement a 4-bit loadable counter that
can count up (from 0-15 in decimal mode) as well as count down (15-0). In this example,
the counter resets to zero if rst is one. If ld is set, then the output (q3..q0) will be set to
the input (d3..d0). If cnten is set, then the counter is enabled and will count up/down
depending on the state of u_d (control pin). If cnten is not set the output will be held to
the last count.
2 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Table 1. 4-bit Loadable Counter Implementation

ABEL Source File (.ABL) CUPL Source File (.pld)

Module unicnt

Interface (d3..d0, clk, rst, cnten, ld, u_d -> q3..q0);

Title '4 bit counter with load, reset, count up, count down';

//Constants

X, C, Z = .X., .C., .Z. ;

Name counter;

PartNo 00 ;

Date 6/30/02;

Revision 01;

Designer Engineer;

Company XYZ;

Assembly None;

Location San Jose;

Device virtual;

/*See Table 6 for description of each field in the header section*/

//Inputs

d3..d0 pin;

clk pin;

rst pin;

cnten pin;

ld pin;

u_d pin;

/* Input */

pin = [d3..0];

pin = clk;

pin = rst;

pin = cnten;

pin = ld;

pin = u_d;

//Output

q3..q0 pin is_type 'reg';

//Counter output, user can choose reg_d to select //D type
registers or reg_t for T-type Registers.

/* Output */

pin = [q3..0];

//Sets

data = [d3..d0]; //Data Set

count = [q3..q0]; //Counter Set

// Forming group of signals into a vector

MODE = [cnten,ld,u_d];

/* Data Set */

field data = [d3..0];

field count = [q3..0]; /* field is a way to group a set of signals */

/* Forming a group of signals into a vector */

field MODE = [cnten,ld,u_d];

// Selecting different modes base on vector values

// possible values are 0, 1, or don't cares

LOAD = (MODE == [X, 1, X]);

HOLD = (MODE == [0, 0, X]);

UP = (MODE == [1, 0, 1]);

DOWN = (MODE == [1, 0, 0]);

/* Selecting different modes based on vector values possible
values are 0, 1, or don't cares */

load = MODE:'b'X1X;

hold = MODE:'b'00X;

up = MODE:'b'101;

down = MODE:'b'100;
3
3303A–PLD–08/02

Equations

when LOAD then count := data;

// Abel does things sequentially

else when UP then count := count + 1;

// Count up logic

else when DOWN then count := count - 1;

// Count down logic

else when HOLD then count := count;

// Hold otherwise

count.clk = clk; // Assign Flip-Flop clock pin

count.ar = rst; // Assign asynchronous reset for Flip-Flop

END unicnt //This specifies the end of the //equations section of
the module

/* The following will create a Moore FSM where the output will be
a function of the state */

SequenceD count { /* Explicitly choose D-FF, */

$REPEAT i = [0..15] /* This macro will expand from 0 to 15 */

Present 'h'{i} /* similar to case statement for each state */

If !load & up Next 'h'{(i+1)%16}; /* Logic for count up */

If !load & down Next 'h'{((i-1)+16)%16}; /* Logic for count down */

If !load & hold Next 'h'{i}; /* Logic for hold */

$REPEND}

APPEND count.d = load & data; /* This is when we want to load */

count.AR = rst; /* Asynchronous reset */

count.ck = clk;

ABEL Test Vectors CUPL Test Vectors

test_vectors ([clk, rst, cnten, ld, u_d, data] -> count)

[.c., 1, 0, 0, 0, 0] -> 0;

[.c., 0, 0, 1, 0, 8] ->8 ;

[.c., 0, 1, 0, 1, 8] -> 9;

[.c., 0, 1, 0, 1, 8] -> 10;

[.c., 0, 1, 0, 1, 8] -> 11;

[.c., 0, 1, 0, 1, 8] -> 12;

[.c., 0, 0, 1, 0, 15] -> 15;

[.c., 0, 1, 0, 0, 15] -> 14;

[.c., 0, 1, 0, 0, 15] -> 13;

[.c., 0, 1, 0, 0, 15] -> 12;

[.c., 1, 0, 0, 0, 15] -> 0;

// The abel test vectors can be included in the source code
file(.abl).

See “Converting an ABEL Simulation Input File to CUPL” on
page 5 for further information.

CUPL test vectors cannot be part of the Source file. A separate
(.si) file must be created as described on page 5.

See “Converting an ABEL Simulation Input File to CUPL” on
page 5 for further information.

Table 1. 4-bit Loadable Counter Implementation (Continued)

ABEL Source File (.ABL) CUPL Source File (.pld)
4 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Converting an ABEL
Simulation Input File
to CUPL

This section describes the features of ABEL and CUPL Simulation input files and the
process of converting an ABEL Simulation input file to a CUPL file. Test vectors must be
created for the simulator to function and they specify the expected functional operation
of a PLD by defining the outputs as a function of the inputs. Test vectors are also used
to do functional testing of a device once it has been programmed, to see if the device
functions as expected.

CUPL There are two tools within Atmel-WinCUPL that can be used to simulate the test vectors.

• WinSim® is a windows-based graphical tool used for creating and editing simulator
(.si) input files and for displaying the results of the simulation in the form of a
waveform. The CUPL simulator requires that a CUPL source file be successfully
compiled prior to running simulation. The CUPL compiler generates an intermediate
file (with extension .ABS) that is used by the simulator to run functional simulation.

• CSIM is a device-specific simulator and VSIM is a virtual simulator (virtual device)
that is text-based and inherently a DOS process. A test specification source file
(filename.si) is the input to CSIM/VSIM. The ATF15xx family of Atmel devices only
runs VSIM.

The source file may be created using a standard text editor in non-document mode. The
source specification file contains three major parts: header information and title block,
ORDER statement and a VECTORS statement.

A .si file must have the same header information as .pld (source) to ensure that the
proper files, including current revision level, are being compared against each other.
Therefore, first copy .pld to .si and then use a text editor to delete everything in .si,
except the header and title block.

ABEL There are two ways to specify test vectors. The most common method is to place test
vectors in the ABEL source file. If the user decides to use this method, the Project Navi-
gator (Atmel-Synario) will detect the presence of test vectors in the source file and
create a “dummy” test vector file. This file indicates to the system that the actual test
vectors are in the ABEL source file.

The other way to specify test vectors is to create a “real” test vector file by selecting the
"New" menu item in the Source menu and then choosing test vectors. Note that test vec-
tor files have the .ABV file extension and must have the same name as the top-level
module. The user must use the Module and End statements exactly as he does when
creating an ABEL source file.

Table 2 shows comparative implementation of describing test vectors for ABEL simula-
tion (.ABV) and CUPL simulation (.SI) for the 4-bit counter.
5
3303A–PLD–08/02

Table 2. Test Vector Description

Counter.abv Counter.si

Module unicnt

"Constants

X, C, Z = .X., .C., .Z.;

//Inputs
d3..d0 pin;

clk pin;

rst pin;

cnten pin;

ld pin;

u_d pin;

//Output
q3..q0 pin istype 'reg';

//Counter output,

//Sets

data = [d3..d0]; //Data Set

count = [q3..q0]; //Counter Set

test_vectors
([clk, rst, cnten, ld, u_d, data] -> count)

[.c., 1, 0, 0, 0, 0] -> 0;

[.c., 0, 0, 1, 0, 8] -> 8;

[.c., 0, 1, 0, 1, 8] -> 9;

[.c., 0, 1, 0, 1, 8] -> 10;

[.c., 0, 1, 0, 1, 8] -> 11;

[.c., 0, 1, 0, 1, 8] -> 12;

[.c., 0, 0, 1, 0, 15] -> 15;

[.c., 0, 1, 0, 0, 15] -> 14;

[.c., 0, 1, 0, 0, 15] -> 13;

[.c., 0, 1, 0, 0, 15] -> 12;

[.c., 1, 0, 0, 0, 15] -> 0;

End

Name counter;

PartNo 00 ;

Date 6/30/02 ;

Revision 01 ;

Designer Engineer ;

Company XYZ ;

Assembly None ;

Location San Jose;

Device virtual ;

ORDER: clk, rst, cnten, ld, u_d, d3, d2, d1,
d0, q3, q2, q1, q0;

VECTORS:
c 1000 0000 LLLL

c 0010 1000 HLLL

c 0101 1000 HLLH

c 0101 1000 HLHL

c 0101 1000 HLHH

c 0101 1000 HHLL

c 0010 1111 HHHH

c 0100 1111 HHHL

c 0100 1111 HHLH

c 0100 1111 HHLL

c 1000 1111 LLLL
6 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Overview of Syntax
Differences between
ABEL and CUPL

The following section includes various tables that show the syntax differences between
the two languages pertaining to extensions, operators and keywords.

Reserved Identifiers
(Keywords)

Table 3. Syntax Differences

ABEL Keyword CUPL Keyword

ASYNCH_RESET None

CASE IF (in a CONDITION statement)

DECLARATIONS None

DEVICE PARTNO

ELSE ELSE

END }

ENDCASE }

ENDWITH None

EQUATIONS None

EXTERNAL None

FLAG (OBSELETE) None

FUNCTIONAL_BLOCK None

FUSES FUSES

GOTO PRESENT, NEXT

IF IF (In a CONDITION statement)

IN None

INTERFACE None

ISTYPE Note 1

LIBRARY None

MACRO FUNCTION

MODULE None

NODE NODE/PINNODE

OPTIONS None

PIN PIN

PROPERTY PROPERTY (Note 2)

STATE PRESENT and $DEFINE

STATE_DIAGRAM SEQUENCE

STATE_REGISTER No equivalent but can be achieved with FIELD

SYNC_RESET None

TEST_VECTORS Generated .SI file

THEN NEXT
7
3303A–PLD–08/02

Notes: 1. Instead of using “ISTYPE” in ABEL, one can use a suitable extension in CUPL.
Extensions such as .D (specify input to a D-type flip flop) can be used with any pin
name. The compiler will determine whether it is valid. The ISTYPE statement defines
attributes (characteristics) of signals (pins and nodes) in ABEL. Please refer to Table
4 for further details on ATTRIBUTES. The user should use signal attributes to remove
ambiguities in architecture-independent designs. Even when a device has been spec-
ified, using attributes ensures that the design operates consistently if the device is
changed later.

2. Property statements are used specifically for the ATF1500A and the ATF15xx family
of devices to describe specific feature of the device that can be used by the Device
Fitter to generate the appropriate FITTER and Jedec files.
For Example:
Atmel-ABEL defines such as: ATMEL property 'DEDICATED_INPUT ON';
Atmel-CUPL defines such as: Property ATMEL {DEDICATED_INPUT ON};

TITLE NAME

TRACE None

TRUTH_TABLE TABLE

WHEN No equivalent but can be replaced by
CONDITION {}

WITH None

Table 4. Attributes Table

Signal Attributes Description

'buffer' No Inverter in Target Device

'collapse' Collapse (remove) this signal

'com' Combinational output

'dc' Unspecified logic is don't care

'invert' Inverter in Target Device

'keep' Do not collapse this signal from equations

'neg' Unspecified logic is 1

'pos' Unspecified logic is 0.

'retain' Do not minimize this output. Preserve redundant product
terms

'reg' Clocked Memory Element

'reg_d' D Flip-flop Clocked Memory Element

'reg_g' D Flip-flop Gated Clocked Memory Element

'reg_jk' JK Flip-flop Clocked Memory Element

'reg_sr' SR Flip-flop Clocked Memory Element

'reg_t' T Flip-flop Clocked Memory Element

'xor' XOR Gate in Target Device

Table 3. Syntax Differences (Continued)

ABEL Keyword CUPL Keyword
8 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Comments in ABEL and
CUPL

ABEL: Comments begin with a double quotation mark (") or double forward slash (//).

CUPL: Comments begin with /* and end with */.

Number Representation
in Different Bases

Header Information
Keywords

Logical Operator

Table 5. Number Representation in Different Bases

Base Name Base

Symbol

ABEL CUPL

Binary 2 ^b ‘b’

Octal 8 ^o ‘o’

Decimal 10 ^d ‘d’

Hexadecimal 16 ^h ‘h’

Table 6. Header Information Keywords

ABEL CUPL Description

Module Name Just a filename.

Title None
Used to give a title or description for the
module. (Optional)

None Partno
The part number for the particular PLD
design.

None Revision
Begin with 01 when first creating a file and
increment each time a file is altered.

None Date
Change to the current date each time a
source file is altered.

None Designer Specify the designer's name.

None Company Specify the company's name.

None Assembly
Give the assembly name or number of the PC
board.

None Location The abbreviation LOC can be used.

None Device
Used to set the default device type for the
compilation.

Table 7. Logical Operator

ABEL CUPL Description

! ! NOT (ones complement)

& & AND

OR

$ $ XOR (exclusive OR)

! $! $ XNOR (exclusive NOR)
9
3303A–PLD–08/02

Arithmetic Operators CUPL arithmetic operators can only be used inside $REPEAT and $MACRO blocks.

Relational Operators

Assignment Operators

Table 8. Arithmetic Operators

ABEL CUPL Description

- - Subtraction

+ + Addition

* * Multiplication

/ / Division

% % Modulus

<< None Shift left by bits

>> None Shift right by bits

Table 9. Relational Operators

ABEL CUPL Description

== None Equal

! = None Not equal

< None Less than

<= None Less than or equal

> None Greater than

>= None Greater than or equal

Table 10. Assignment Operators

ABEL CUPL Set Description

= = ON(1) Combinational or detailed assignment

: = = ON(1) Implied registered assignment

? = None DC(X) Combinational or detailed assignment

?:= None DC(X) Implied registered assignment

?:= None DC(X) Implied registered assignment
10 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Operator Priority

Dot Extension The dot extensions valid for pins or specific signals in CUPL as well as ABEL are listed
in Table 12.

Table 11. Operator Priority

ABEL CUPL Priority Description

- None 1 Negate

! ! 1 NOT

& & 2 AND

<< None 2 Shift left

>> None 2 Shift right

* * 2 Multiply

/ / 2 Unsigned division

% % 2 Modulus

+ + 3 Add

- - 3 Subtract

3 OR

$ $ 3/4 XOR: exclusive OR

!$ None 3 XNOR: exclusive NOR

== None 4 Equal

!= None 4 Not equal

< None 4 Less than

<= None 4 Less than or equal

> None 4 Greater than

>= None 4 Greater than or equal

Table 12. Dot Extension

ABEL CUPL Description

.ACLR None Asynchronous clear

.ASET None Asynchronous set

.CLK .CK Clock input to an edge-triggered flip-flop

.CLR None Synchronous clear

.COM None
Combinational feedback normalized to the pin
value

.OE .OE Output enable

.PIN None Pin feedback

.SET None Synchronous set

.AP .AP Asynchronous preset

.AR .AR Asynchronous reset
11
3303A–PLD–08/02

Notes: 1. The .CKMUX dot extension used in CUPL is specific to the Atmel ATV750B and
ATF750C devices. The .CKMUX extension is used to connect the clock input of a reg-
ister to the Synchronous clock pin. This is needed because some devices have a
multiplexer for connecting the clock to one set of pins.

2. .DFB and .DQ on CUPL are only used for D-type flip-flop. However, .FB and .Q in
ABEL can be used for any type of flip-flops such as D, T, JK, SR flip-flops.

.CE .CE Clock-enable input to a gated-clock flip-flop

.D .D Data input to a D-type flip-flop

.J .J J input to a JK-type flop-flop

.K .K K input to a JK-type flip-flop

.LD None Register load input

.LE None Latch-enable input to a latch

.LH .LE Latch-enable (high) to a latch

.PR .PR Register preset

.Q None Register feedback

.R .R R input to an SR-type flip-flop

.RE None Register reset

.S .S S input to an SR-type flip-flop

.SP .SP Synchronous register preset

.SR .SR Synchronous register reset

.T .T T input to a T-type (toggle) flip-flop

Note 1 .CKMUX Clock multiplexer selection

.FB (Note 2) .DFB D registered feedback path selection

.Q (Note 2) .DQ Q output of D-type flip-flop

None .INT Internal feedback path for registered macro cell

None .IO Pin feedback path selection

None .IOCK Clock for pin feedback register

None .IOD Pin feedback path through D register

None .IOL Pin feedback path through latch

None .L D input of transparent latch

None .LEMUX Latch enable multiplexer selection

None .LFB Latched feedback path selection

None .LQ Q output of transparent input latch

None .OEMUX Tri-state multiplexer selection

None .TFB T registered feedback path selection

Table 12. Dot Extension (Continued)

ABEL CUPL Description
12 ABEL/CUPL Design File Conversion
3303A–PLD–08/02

ABEL/CUPL Design File Conversion
Extensions Applicable
for Atmel EPLD Devices

Table 13 lists specific extensions valid for Atmel EPLD devices.

Table 13. Valid Atmel EPLD Device Extensions

Atmel PLDs Valid Extensions

ATF16V8B/BQ/BQL OE, D

ATF16V8C/CZ

ATF20V8B/BQ/BQL

ATF20V8C/CQ/CQZ

ATF22V10C/CQ/CQZ OE, D, AR, SP

ATF22LV10C/CZ/CQZ

ATV750/L D, AR, CK, OE, SP, DFB, IO

ATV750B/BL D, T, AR, CK, CKMUZ, OE, SP, DFB, IO

ATF750C/CL/LVC/LVCL

ATF1500A/AL/ABV D, AR, CK, CE, OE, AP, IO, T, L, LE

ATV2500B/BL/BQ/BQL D, T, AR, CK, OE, SP, IO, CE

ATF2500C/CQ/CQL

ATF1502AS/ASL/ASV/ASVL D, T, S, R, OE, OEMUX, CK, CKMUX, AR,
DQ, LQ, IO

ATF1504AS/ASL/ASV/ASVL

ATF1508AS/ASL/ASV/ASVL
13
3303A–PLD–08/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

3303A–PLD–08/02 xM

ATMEL® is the registered trademark of Atmel; Atmel-WinCUPL™, Atmel-Synario™ and ProChip Designer™ are
the trademarks of Atmel.

Xilinx® is the registered trademark of Xilinx, Inc. WinSim® is the registered trademark of WinSim, Inc. Altium™

and Design Explorer™ are the trademarks of Altium Limited. Data I/O™ is the trademark of Data I/O Corpora-
tion. Other terms and product names may be the trademarks of others.3303A

	Background for ABEL and CUPL
	Compiler and Tool Options
	Process of Conversion of an ABEL Example File to CUPL
	Description of Example

	Converting an ABEL Simulation Input File to CUPL
	CUPL
	ABEL

	Overview of Syntax Differences between ABEL and CUPL
	Reserved Identifiers (Keywords)
	Comments in ABEL and CUPL
	Number Representation in Different Bases
	Header Information Keywords
	Logical Operator
	Arithmetic Operators
	Relational Operators
	Assignment Operators
	Operator Priority
	Dot Extension
	Extensions Applicable for Atmel EPLD Devices

