
Computer Architectures

Software Lab 1 : Minimal 'CISC' Processor (MCP)
The aim of this lab is to examine the internal operations of one possible hardware
realisation of the SimpleCPU processor. This hardware architecture is defined as a
VHDL simulation model, allowing you view the processor’s operation as a waveform
diagram i.e. to see each individual signal, data bus and register value. VHDL is a
hardware description language i.e. a textual description, defining the hardware units
within the processor and how they are connected. In addition to simulations this
model can also be synthesised i.e. converted into a configuration file and used to
configure physical hardware devices e.g. Field Programmable Gate Arrays (FPGA).

Note, the implementation you will be using is base on a Minimal CISC Processor
(MCP) I wrote many moons ago. Processing performance was not a design goal for
this CPU, the main objective was to reduce hardware usage. The same instruction-set
could also be implemented as a RISC architecture, as shown in:

http://www.simplecpudesign.com/simple_cpu_v1/index.html

The key point to note is that an instruction-set can be implemented in a number of
different hardware architectures, each optimised for a particular application domain.

A VHDL project called mcp has already been created and can be downloaded from
the module web page (link under lab script).

Using your preferred web browser download the file mcp.zip to c:\temp. Note,
you can run this simulation from your home directory, however, network speeds may
cause it to run VERY slowly. Right click on this file selecting ‘Extract all…’ to unzip
it. To start the Vivado project navigator left click on the Windows icon in the bottom
left of the screen and type :

 -> Vivado 2017.2

This may take a few minutes to load, eventually you should see the main GUI, as
shown in figure 1. To open the downloaded project click on the Open Project icon, or
the pull down:

File -> open project

This will open the 'Open project' box, browse to the directory where you unzipped this
project and select the file mcp.xpr. Again, this may take a few minutes to open.

Within the main project window you will be able to access the VHDL model files,
double click on the memory component MEM, this will open the VHDL text file
ram.vhd in the main panel, as shown in figure 2. This VHDL description defines a
simple read / write memory, capable of storing 256 x 16bits. As the processor is based
on a Von Neumann architecture it will be used to stored instructions and data. As with
the CPUSim model the first instruction is stored at address 0 i.e. its boot or reset
vector.

 Mike@simplecpudesign.com : 15/07/19 Page : 1

mailto:Mike@simplecpudesign.com
http://www.simplecpudesign.com/simple_cpu_v1/index.html

Computer Architectures

Figure 1: Vivado main window

Figure 2: project files

Task 1
Click on the ram.vhd text file in the main panel and scroll down to line 44, as
shown in figure 3. This section defines this hardware component's interface (ports) i.e.
the physical pins that are need on the actual hardware device:

• clk : clock, control signal, synchronising memory transactions with the rest
of the CPU's hardware.

 Mike@simplecpudesign.com : 15/07/19 Page : 2

mailto:Mike@simplecpudesign.com

Computer Architectures

• addr : address bus, uni-directional, input, 8bits, selecting the memory
location to be read or written to.

• din : data input, uni-directional, input, 16bits, data from the processor to be
written to selected memory location.

• dout : data output, uni-directional, output, 16bits, data requested by the
processor from the selected memory location.

• rw : read / write control signal, uni-directional, input, 1bit, from the processor,
a logic 1 indicates that the memory transaction is a READ, a logic 0 indicates
that it is a WRITE.

Note, for some memory technologies the data bus is a single, bi-directional bus. This
reduces the number of physical pins needed on the device, as the same pins are used
as both inputs and outputs (multiplexed), but this does complicate its operations i.e.
need to connect and disconnect different drivers. For the hardware we will be using
(FPGAs) these types of bi-directional buses are not generally supported.

Figure 3: VHDL interface

Figure 4: memory locations

Next, scroll down to line 84, as shown in figure 4. This section of VHDL defines the
contents of each memory location. Data values are highlighted in PURPLE (or blue),
addresses are included as comments in GREY e.g. --01. To program this processor
you will need to manually edit these binary data strings with the correct machine code
instructions or data values i.e. value 10

10
 = binary value “0000000000001010”.

The instructions supported by this processor are equivalent to the instruction formats
used in the CPUSim laboratories and discussed in the associated lectures. A full list of
the supported instructions is shown in figure 5. The processor uses a 16bit fixed

 Mike@simplecpudesign.com : 15/07/19 Page : 3

mailto:Mike@simplecpudesign.com

Computer Architectures

length instruction, 4bit opcode, followed by an 8bit immediate value (KK), data
memory address (PP) or an instruction memory address (AA). Jump instructions also
contain a 2bit bit field, selecting the conditional flag used.

 Load ACC kk : 0000 XXXX KKKKKKKK
 Add ACC kk : 0100 XXXX KKKKKKKK
 Add ACC pp : 1100 XXXX PPPPPPPP
 Input ACC pp : 1010 XXXX PPPPPPPP
 Output ACC pp : 1110 XXXX PPPPPPPP
 Jump U aa : 1000 XXXX AAAAAAAA
 Jump Z aa : 1001 00XX AAAAAAAA
 Jump C aa : 1001 10XX AAAAAAAA
 Jump NZ aa : 1001 01XX AAAAAAAA
 Jump NC aa : 1001 11XX AAAAAAAA

Figure 5: instruction set

IMPORTANT, the main difference between this processor and the one simulated in
CPUSim is that memory is not byte addressable i.e. each address represents a 16bit
value. Make sure you understand how this will affect your program.

Task 2
Edit the ram.vhd text file inserting the required machine code for the assembly
language program below. The required machine code is shown on the right.

start: ADDR DATA
 input A 0 1010 0000 00000100
 add 01 1 0100 0000 00000001
 output A 2 1110 0000 00000100
 jump start 3 1000 0000 00000000

A: .data 2 0 4 0000 0000 00000000

Make sure you understand how each instruction and data value are represented. To
save these edits click on the save icon or press CTRL-S.

To simulate this processor and its program click on the icon, within
the Simulation panel (middle, left side). Then select 'Run behavioural simulation'
from the options given. This will open 'Launch Runs' window, ensure that the radio
button 'Launch runs on local host' is selected and click OK, status information is
shown in the top right of the main window, after a small delay a waveform trace as
shown in figure 6 will appear.

By default the hardware simulation is run for 1us, however, this may not be long
enough to see the processor executing all of the instructions in a program. To step
through the simulation click on the icon, this will step through the simulation in
1us steps, time steps defined in the text box. To restart the simulation click on the
 icon, this will return the simulation to time 0s. These icons are in a block in the
top middle of the GUI i.e. .

 Mike@simplecpudesign.com : 15/07/19 Page : 4

mailto:Mike@simplecpudesign.com

Computer Architectures

Run this simulation for 15ms. Note, change time step to ms and units to 5.
To zoom in, out or to fit the waveform to the screen you can click on the following
icons, located on the vertical tool bar on the waveform trace: Zoom in,
 Zoom out, Zoom fit. If you left click on the signals within the simulation
window a yellow cursor line will appear. Displayed on the top of this line is the
simulation time.

There are two types of waveforms displayed in the simulation:

• Signals - - single wire, assigned a logical '1' or '0'

• Bus - - this indicates a collection of wires e.g. address.

 To examine individual wires in this bus right
 click on the bus name and select Expand.

Question: examine the waveform trace (also shown in figures 6 & 7). Can you
identify the machine code values of each instruction and what memory address it is
stored in?

Figure 6: hardware simulation

Figure 7: hardware simulation, memory expanded view

 Mike@simplecpudesign.com : 15/07/19 Page : 5

Logic '1' (high) Logic '0' (low)

mailto:Mike@simplecpudesign.com

Computer Architectures

Question: how long does an instruction take to execute i.e. the number of clock
cycles? Does each instruction take the same amount of time to execute? Why do some
instructions take longer than others?

Hint, look at the IR and PC values to estimate time.

Question: modify your program so that it adds 0xAA to variable A on each loop. Run
the simulation for 15ms (15,000us). What is the value in the ACC at this simulation
time. Do you understand why the value is 0x52?

Task 3
In addition to a memory device this processor also has a 16bit output port i.e. the
processor can control the state of 16 wires, setting their individual values to either a
logic '1' or a logic '0'. The hardware used to implement this functionality is memory
mapped to addresses 0xFF and 0xFE i.e. its functionality is triggered when the
processor writes to memory address 0xFF or 0xFE. To identify when this operation is
performed by the processor the address decoder logic shown in figure 8 is used.

Figure 8: address decoding logic

When the address bus lines A7 – A1 are all logic '1' and the read/write (R/W) control
line is a logic '0' the CE line is enabled. This is then combined with A0, enables either
the low or high byte on the output port to be updated .

Note, the output port is just a bank of 16 flip-flops, their D inputs are connected to the
data bus (D7-D0), their Q outputs connect to external wires (LEDs). These signals
can not be read by the processor i.e. are not connected to the data bus. The flip-flops
also have an enable line, if this is low the clock (update signal) is ignored, eight flip-
flips are connect to ENABLE_LOW_BYTE, eight to ENABLE_HIGH_BYTE.

Question: can you see why this hardware will only generate enable signals for
memory transactions that write to addresses 0xFE and 0xFF?

 Mike@simplecpudesign.com : 15/07/19 Page : 6

A7
A6
A5
A4

A3
A2
A1

ENABLE
HIGH BYTE

R/W

 A0

ENABLE
LOW BYTE

CE

mailto:Mike@simplecpudesign.com

Computer Architectures

Edit the ram.vhd text file inserting the required machine code for the assembly
language program below.

ADDR INSTRUCTION DESCRIPTION
 0 load 0x00 ACC <- 0xFF
 1 output 0xFE M[0xFE] <- ACC
 2 load 0x01 ACC <- 0
 3 output 0xFE M[0xFE] <- ACC
 4 jump 0 repeat

Question: what does this program do? Next, modify this program to implement the
following pseudo code:

LOOP:
WRITE TO OUTPUT PORT 0xFFFF
WRITE TO OUTPUT PORT 0xA0A0
WRITE TO OUTPUT PORT 0x0505
JUMP LOOP

Rerun the simulator to confirm that the output port is updated with the correct values.

Question: why will the program produce intermediate results i.e. values other than
0xFFFF, 0xA0A0 and 0x0505? Is there a software solution to prevent this? Is there a
hardware solution to prevent this?

Task 4
To control the speed at which the output port is updated we will need to implement a
software delay loop i.e. a piece of code that effectively wastes processor cycles,
delaying the progression of the program.

Edit the ram.vhd text file adding the required machine code to implement the
following program:

ADDR INSTRUCTION DESCRIPTION
 0 load 0 ACC <- 0x00
 1 output 0x09 M[0x09] <- ACC
 2 load 0 ACC <- 0x00
 3 add 1 ACC <- ACC + 1
 4 jump NC 3 loop until overflow
 5 input 0x09 ACC <- M[0x09]
 6 add 1 ACC <- ACC + 1
 7 output 0x09 M[0x09] <- ACC
 8 jump 2 repeat
 9 DATA variable COUNT

Question: can you see why the rate at which the variable COUNT is updated is
delayed?

If the processor's clock speed is approximately 6.25KHz, write a program to turn the
output port's pins on and off every 0.25 seconds. Rerun the simulator to confirm that
the output port now updating at a slower rate.

 Mike@simplecpudesign.com : 15/07/19 Page : 7

mailto:Mike@simplecpudesign.com

Computer Architectures

When your program is working correctly you can convert this design into a format
that can be downloaded into a FPGA i.e. actual hardware. Connected the output port
are four RGB LEDs and four ordinary LEDs, as shown in figure 9, a configuration
file connecting VHDL signal names to actual FPGA pins.

Driving a logic '1' onto an output pin will cause the associated LED to be
illuminated. In addition to these outputs there are also four inputs (sw). These are not
connected to the processor, but are logically ORed with output port bits 0,1,2 and 3.
This allows you to test if the FPGA has been configured correctly i.e. if one of these
switches is moved into the logic '1' position an LED will be illuminated.

Figure 9: Pin configuration file - LEDs and Switches

Task 5
To implement this system click on the icon. Whilst the software
tools are converting the VHDL models used in the simulation into hardware i.e. logic
gates & registers, a progress bar is displayed in the top right of the screen
 , a more detailed view can be seen by clicking on the
 tab at the bottom of the screen.

When this process is complete a Synthesis Completed box will appear, select the
Run Implementation button then click on OK to continue. Alternatively you can click
on the icon. Again a progress bar is displayed in the top right of
the screen.

The implementation phase selects which logic gates and registers in the FPGA should
be used to construct this system. It then allocates routing resources (wires) within the
hardware to actually implement the required circuits. When complete the
Implementation Completed box will appear. Select the Generate Bitstream option,
then click on OK to continue. Alternatively, you can click on the
icon under the Program And Debug icon.

 Mike@simplecpudesign.com : 15/07/19 Page : 8

mailto:Mike@simplecpudesign.com

Computer Architectures

When the FPGA configuration file (bit stream) is complete the Bitstream Generation
Completed box will appear. Select Open Hardware Manager, then click on OK to
continue. Alternatively, you can click on the icon.

You can now program the FPGA board shown in 10. These boards are available from
boxes from the back of the lab. They do NOT need an external power supply, simply
plug the USB cable into the front of the PC.

Figure 10: FPGA board

On the side panel under the icon, click on the
icon, selecting . The software should detect the Digilent FPGA,
allowing you to click on the icon, allowing you to select and program
the Xilinx XC7a35t_0 FPGA on this board. This will open a Program Device box,
allowing you to select the bitstream configuration file to be downloaded i.e. the .bit
file. By default previously generated file should be selected:

<root folder>/mcp/mcp.runs/impl_2/mcp_top_level.bit

Click on the Program button to configure the FPGA. Once programmed try pressing
one or more of the switches, as shown in figure 11.

Figure 11: FPGA board test switches

 Mike@simplecpudesign.com : 15/07/19 Page : 9

mailto:Mike@simplecpudesign.com

Computer Architectures

These switches have been combined into the FPGA design as shown in figure 12.
These four signals are logically ORed with GPO bits 0 – 3, allowing you to control
the first two RGB LEDs. These switches can not be accessed by the processor as it
does not have an input port. There function is to confirm that an FPGA design has
been correctly downloaded onto the board i.e. if you can not change these LEDs a
configuration file has not been downloaded into the FPGA.

 Mike@simplecpudesign.com : 15/07/19 Page : 10

mailto:Mike@simplecpudesign.com

Computer Architectures

Figure 12: FPGA design

 Mike@simplecpudesign.com : 15/07/19 Page : 11

mailto:Mike@simplecpudesign.com

	Software Lab 1 : Minimal 'CISC' Processor (MCP)
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5

